Abstract

A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morancais, and D. Demuth, “The ADM-Aelous Mission - The First Wind-Lidar In Space,” in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, ILRC 2004, Matera, Italy, G. Pappalardo and A. Amodeo, eds. (ESA Publication Division, ESTEC, Noordwijk, The Netherlands, 2004), pp. 953–956.
  2. V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapor remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
    [Crossref]
  3. P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, “Pure rotational Raman lidar measurements of atmospheric temperature, relative humidity and extinction from space: performance simulations,” submitted to Appl. Opt. (2005).
  4. National Science Foundation (NSF, USA) and National Center for Atmospheric Research (NCAR, USA), “HIAPER - High-Performance Instrumented Airborne Platform for Enviromental Research,” Project Office Home Page, http://www.hiaper.ucar.edu/.
  5. German aerospace center (DLR), “HALO - High Altitude and Long Range Research Aircraft,” Project Office Home Page, http://www.pa.op.dlr.de/halo/.
  6. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 304–324 (1998).
    [Crossref]
  7. V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
    [Crossref]
  8. ESA, “WALES - WAter vapour Lidar Experiment in Space,” in ESA SP-1257(2) - Report for Assessment, P. Ingmann and A. Hélière, eds. (ESA Publication Division, ESTEC, Noordwijk, The Netherlands, 2001)
  9. A. Behrendt, “Temperature Measurements with Lidar,” in Lidar - Range Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer Series in Optical Sciences 102, New York, 2005), pp. 273–305.
  10. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44, 582–590 (2005).
    [Crossref] [PubMed]
  11. A. Suda, A. Kadoi, K. Nagasaka, H Tashiro, and K. Midorikawa, “Absorption and Oscillation Characteristics of a Pulsed Cr4+:YAG Laser Investigated by a Double-Pulse Pumping Technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
    [Crossref]
  12. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [Crossref]
  13. Recommended values of “Thermal Conductivity of Aluminium Oxide (Sapphire),” in Thermophysical Properties of Matter, Y. S. Touloukian and C. Y. Ho, eds. (IFI/Plenum TPRC Data Series 2, New York, 1972), pp. 93–97.
  14. R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34, 1047–1053 (1998).
    [Crossref]
  15. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, Hoboken (NJ), 2002)
  16. K. Frauchiger, P. Albers, and H. P. Weber, “Modeling of Thermal Lensing and Higher Order Ring Mode Oscillation in End-Pumped CW Nd:YAG Lasers,” IEEE J. Quantum Electron. 28, 1046–1056 (1992).
    [Crossref]
  17. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal Modeling of Continous-Wave End-Pumped Solid-State Lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
    [Crossref]
  18. W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, A. L. Schawlow, A. E. Siegman, and T. Tamir, eds. (Springer Series in Optical Sciences 1, New York, 1999), pp. 406–468.
  19. N.W. Rimington, S. L. Schieffer, W. A. Schroeder, and B. K. Brikeen, “Thermal lens shaping in a Brewster-Gain Media: A high-power, diode-pumped Nd:GdVO4 laser” Opt. Express 12, 1426–1436 (2004).
    [Crossref] [PubMed]
  20. A. E. Siegman, “Ray Optics and Ray Matrices,” in Lasers, A. Kelly, ed. (University Science Books, Sausalito (CA), 1986), pp. 581–625.

2005 (3)

A. Behrendt, “Temperature Measurements with Lidar,” in Lidar - Range Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer Series in Optical Sciences 102, New York, 2005), pp. 273–305.

A. Behrendt, “Temperature Measurements with Lidar,” in Lidar - Range Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer Series in Optical Sciences 102, New York, 2005), pp. 273–305.

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44, 582–590 (2005).
[Crossref] [PubMed]

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapor remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
[Crossref]

2004 (1)

2003 (1)

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

1999 (1)

A. Suda, A. Kadoi, K. Nagasaka, H Tashiro, and K. Midorikawa, “Absorption and Oscillation Characteristics of a Pulsed Cr4+:YAG Laser Investigated by a Double-Pulse Pumping Technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[Crossref]

1998 (2)

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 304–324 (1998).
[Crossref]

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34, 1047–1053 (1998).
[Crossref]

1992 (1)

K. Frauchiger, P. Albers, and H. P. Weber, “Modeling of Thermal Lensing and Higher Order Ring Mode Oscillation in End-Pumped CW Nd:YAG Lasers,” IEEE J. Quantum Electron. 28, 1046–1056 (1992).
[Crossref]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal Modeling of Continous-Wave End-Pumped Solid-State Lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[Crossref]

1986 (1)

Albers, P.

K. Frauchiger, P. Albers, and H. P. Weber, “Modeling of Thermal Lensing and Higher Order Ring Mode Oscillation in End-Pumped CW Nd:YAG Lasers,” IEEE J. Quantum Electron. 28, 1046–1056 (1992).
[Crossref]

Bauer, H.

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapor remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
[Crossref]

Bauer, H.-S.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Behrendt, A.

A. Behrendt, “Temperature Measurements with Lidar,” in Lidar - Range Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer Series in Optical Sciences 102, New York, 2005), pp. 273–305.

P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, “Pure rotational Raman lidar measurements of atmospheric temperature, relative humidity and extinction from space: performance simulations,” submitted to Appl. Opt. (2005).

Brikeen, B. K.

Crewell, S.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Demuth, D.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morancais, and D. Demuth, “The ADM-Aelous Mission - The First Wind-Lidar In Space,” in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, ILRC 2004, Matera, Italy, G. Pappalardo and A. Amodeo, eds. (ESA Publication Division, ESTEC, Noordwijk, The Netherlands, 2004), pp. 953–956.

DeWitt, D. P.

F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, Hoboken (NJ), 2002)

Di Girolamo, P.

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapor remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
[Crossref]

P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, “Pure rotational Raman lidar measurements of atmospheric temperature, relative humidity and extinction from space: performance simulations,” submitted to Appl. Opt. (2005).

Dubock, P.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morancais, and D. Demuth, “The ADM-Aelous Mission - The First Wind-Lidar In Space,” in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, ILRC 2004, Matera, Italy, G. Pappalardo and A. Amodeo, eds. (ESA Publication Division, ESTEC, Noordwijk, The Netherlands, 2004), pp. 953–956.

Ehret, G.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Endemann, M.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morancais, and D. Demuth, “The ADM-Aelous Mission - The First Wind-Lidar In Space,” in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, ILRC 2004, Matera, Italy, G. Pappalardo and A. Amodeo, eds. (ESA Publication Division, ESTEC, Noordwijk, The Netherlands, 2004), pp. 953–956.

Engelbart, D.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal Modeling of Continous-Wave End-Pumped Solid-State Lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[Crossref]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal Modeling of Continous-Wave End-Pumped Solid-State Lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[Crossref]

Frauchiger, K.

K. Frauchiger, P. Albers, and H. P. Weber, “Modeling of Thermal Lensing and Higher Order Ring Mode Oscillation in End-Pumped CW Nd:YAG Lasers,” IEEE J. Quantum Electron. 28, 1046–1056 (1992).
[Crossref]

Giesen, A.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Grassl, H.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Huber, G.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Incropera, F. P.

F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, Hoboken (NJ), 2002)

Ingmann, P.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morancais, and D. Demuth, “The ADM-Aelous Mission - The First Wind-Lidar In Space,” in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, ILRC 2004, Matera, Italy, G. Pappalardo and A. Amodeo, eds. (ESA Publication Division, ESTEC, Noordwijk, The Netherlands, 2004), pp. 953–956.

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal Modeling of Continous-Wave End-Pumped Solid-State Lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[Crossref]

Kadoi, A.

A. Suda, A. Kadoi, K. Nagasaka, H Tashiro, and K. Midorikawa, “Absorption and Oscillation Characteristics of a Pulsed Cr4+:YAG Laser Investigated by a Double-Pulse Pumping Technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[Crossref]

Kappe, P.

Klingenberg, H.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Koechner, W.

W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, A. L. Schawlow, A. E. Siegman, and T. Tamir, eds. (Springer Series in Optical Sciences 1, New York, 1999), pp. 406–468.

Kummer, U.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Mac Donald, M.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34, 1047–1053 (1998).
[Crossref]

Mahnke, P.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Menzel, R.

Midorikawa, K.

A. Suda, A. Kadoi, K. Nagasaka, H Tashiro, and K. Midorikawa, “Absorption and Oscillation Characteristics of a Pulsed Cr4+:YAG Laser Investigated by a Double-Pulse Pumping Technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[Crossref]

Morancais, D.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morancais, and D. Demuth, “The ADM-Aelous Mission - The First Wind-Lidar In Space,” in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, ILRC 2004, Matera, Italy, G. Pappalardo and A. Amodeo, eds. (ESA Publication Division, ESTEC, Noordwijk, The Netherlands, 2004), pp. 953–956.

Moulton, P. F.

Nagasaka, K.

A. Suda, A. Kadoi, K. Nagasaka, H Tashiro, and K. Midorikawa, “Absorption and Oscillation Characteristics of a Pulsed Cr4+:YAG Laser Investigated by a Double-Pulse Pumping Technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[Crossref]

Neuenschwander, B.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34, 1047–1053 (1998).
[Crossref]

Ostermeyer, M.

Reitebuch, O.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Rhodin, A.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Rimington, N.W.

Ritter, P.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Roos, M. B.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34, 1047–1053 (1998).
[Crossref]

Schawlow, A. L.

W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, A. L. Schawlow, A. E. Siegman, and T. Tamir, eds. (Springer Series in Optical Sciences 1, New York, 1999), pp. 406–468.

Schieffer, S. L.

Schroeder, W. A.

Serio, C.

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapor remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
[Crossref]

Siegman, A. E.

A. E. Siegman, “Ray Optics and Ray Matrices,” in Lasers, A. Kelly, ed. (University Science Books, Sausalito (CA), 1986), pp. 581–625.

W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, A. L. Schawlow, A. E. Siegman, and T. Tamir, eds. (Springer Series in Optical Sciences 1, New York, 1999), pp. 406–468.

Suda, A.

A. Suda, A. Kadoi, K. Nagasaka, H Tashiro, and K. Midorikawa, “Absorption and Oscillation Characteristics of a Pulsed Cr4+:YAG Laser Investigated by a Double-Pulse Pumping Technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[Crossref]

Tamir, T.

W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, A. L. Schawlow, A. E. Siegman, and T. Tamir, eds. (Springer Series in Optical Sciences 1, New York, 1999), pp. 406–468.

Tashiro, H

A. Suda, A. Kadoi, K. Nagasaka, H Tashiro, and K. Midorikawa, “Absorption and Oscillation Characteristics of a Pulsed Cr4+:YAG Laser Investigated by a Double-Pulse Pumping Technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[Crossref]

Wallenstein, R.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Wandinger, U.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Weber, H. P.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34, 1047–1053 (1998).
[Crossref]

K. Frauchiger, P. Albers, and H. P. Weber, “Modeling of Thermal Lensing and Higher Order Ring Mode Oscillation in End-Pumped CW Nd:YAG Lasers,” IEEE J. Quantum Electron. 28, 1046–1056 (1992).
[Crossref]

Weber, R.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34, 1047–1053 (1998).
[Crossref]

Weitkamp, C.

A. Behrendt, “Temperature Measurements with Lidar,” in Lidar - Range Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer Series in Optical Sciences 102, New York, 2005), pp. 273–305.

Wergen, W.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Werner, C.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Wimmer, R.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morancais, and D. Demuth, “The ADM-Aelous Mission - The First Wind-Lidar In Space,” in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, ILRC 2004, Matera, Italy, G. Pappalardo and A. Amodeo, eds. (ESA Publication Division, ESTEC, Noordwijk, The Netherlands, 2004), pp. 953–956.

Wirth, M.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Wührer, C.

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Wulfmeyer, V.

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44, 582–590 (2005).
[Crossref] [PubMed]

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapor remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
[Crossref]

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 304–324 (1998).
[Crossref]

P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, “Pure rotational Raman lidar measurements of atmospheric temperature, relative humidity and extinction from space: performance simulations,” submitted to Appl. Opt. (2005).

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal Modeling of Continous-Wave End-Pumped Solid-State Lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[Crossref]

Appl. Opt. (2)

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 304–324 (1998).
[Crossref]

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44, 582–590 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal Modeling of Continous-Wave End-Pumped Solid-State Lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[Crossref]

IEEE J. Quantum Electron. (3)

A. Suda, A. Kadoi, K. Nagasaka, H Tashiro, and K. Midorikawa, “Absorption and Oscillation Characteristics of a Pulsed Cr4+:YAG Laser Investigated by a Double-Pulse Pumping Technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[Crossref]

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34, 1047–1053 (1998).
[Crossref]

K. Frauchiger, P. Albers, and H. P. Weber, “Modeling of Thermal Lensing and Higher Order Ring Mode Oscillation in End-Pumped CW Nd:YAG Lasers,” IEEE J. Quantum Electron. 28, 1046–1056 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

Meteorol. Z. (1)

V. Wulfmeyer, H.-S. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, “Lidar Research Network Water Vapor andWind,” Meteorol. Z. 12, 5–24 (2003).
[Crossref]

Opt. Express (1)

Remote Sens. Environ. (1)

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapor remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
[Crossref]

Other (10)

P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, “Pure rotational Raman lidar measurements of atmospheric temperature, relative humidity and extinction from space: performance simulations,” submitted to Appl. Opt. (2005).

National Science Foundation (NSF, USA) and National Center for Atmospheric Research (NCAR, USA), “HIAPER - High-Performance Instrumented Airborne Platform for Enviromental Research,” Project Office Home Page, http://www.hiaper.ucar.edu/.

German aerospace center (DLR), “HALO - High Altitude and Long Range Research Aircraft,” Project Office Home Page, http://www.pa.op.dlr.de/halo/.

ESA, “WALES - WAter vapour Lidar Experiment in Space,” in ESA SP-1257(2) - Report for Assessment, P. Ingmann and A. Hélière, eds. (ESA Publication Division, ESTEC, Noordwijk, The Netherlands, 2001)

A. Behrendt, “Temperature Measurements with Lidar,” in Lidar - Range Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer Series in Optical Sciences 102, New York, 2005), pp. 273–305.

Recommended values of “Thermal Conductivity of Aluminium Oxide (Sapphire),” in Thermophysical Properties of Matter, Y. S. Touloukian and C. Y. Ho, eds. (IFI/Plenum TPRC Data Series 2, New York, 1972), pp. 93–97.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morancais, and D. Demuth, “The ADM-Aelous Mission - The First Wind-Lidar In Space,” in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, ILRC 2004, Matera, Italy, G. Pappalardo and A. Amodeo, eds. (ESA Publication Division, ESTEC, Noordwijk, The Netherlands, 2004), pp. 953–956.

F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, Hoboken (NJ), 2002)

A. E. Siegman, “Ray Optics and Ray Matrices,” in Lasers, A. Kelly, ed. (University Science Books, Sausalito (CA), 1986), pp. 581–625.

W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, A. L. Schawlow, A. E. Siegman, and T. Tamir, eds. (Springer Series in Optical Sciences 1, New York, 1999), pp. 406–468.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Cooler of two-side pumped Titanium-Sapphire crystal.

Fig. 2.
Fig. 2.

2-d cross-section through the calculated 3-d temperature field of a plane-parallel crystal pumped with 25 W each side.

Fig. 3.
Fig. 3.

2-d cross-section through the calculated 3-d temperature field of Brewster-cut crystal pumped with 25 W each side.

Fig. 4.
Fig. 4.

Calculated temperature at center towards surface for Brewster-cut crystal. The temperature distribution for both planes is nearly the same at crystal center.

Fig. 5.
Fig. 5.

Calculated temperature along the optical axis of the crystal for Brewster-cut crystal.

Fig. 6.
Fig. 6.

Calculated temperature (blue line) and its parabolic approximation (red line).

Fig. 7.
Fig. 7.

Calculated focal lengths of thermal lens for Brewster-cut crystal.

Fig. 8.
Fig. 8.

Sagittal and tangential plane beam propagation of a high-power Ti:Sapphire ring resonator.

Fig. 9.
Fig. 9.

Stability zone of a high-power Ti:Sapphire ring resonator.

Tables (1)

Tables Icon

Table 1. WALES mission requirements for laser transmitter.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E Fl , sat = h ν σ gs ,
α = n 0 σ g s ,
η = E photon , 532 nm E photon , 935 nm E photon , 532 nm = 1 h ν 935 h ν 532 ,
[ κ ( T ( x , y , z , t ) ) T ( x , y , z , t ) ] = H ( x , y , z , t )
H ( x , y , z , t ) = p ( t ) 2 η P π ω p 2 α 1 exp ( α l ) exp ( 2 x 2 ω p 2 ) exp ( 2 y 2 ω p 2 )
× [ exp ( α z ) + exp ( α ( z l ) ) ] .
M t , T L = M T 2 M T L x , i = m M T L x , i = 1 M T 1
= ( 1 n 0 cos Θ B n sin Θ B cos Θ B sin Θ B R x n ) ( cos b x , i ( d n x , i ) ( sin b x , i b x , i ) ( n x , i d ) b x , i sin b x , i cos b x , i ) i = 1 m
( n 0 n sin Θ B cos Θ B cos Θ B sin Θ B R x 1 n )
M s , T L = M S 2 M T L y , i = m M T L y , i = 1 M S 1
= ( 1 0 n sin Θ B cos Θ B R y 1 ) ( cos b y , i ( d n y , i ) ( sin b y , i b y , i ) ( n y , i d ) b y , i sin b y , i cos b y , i ) i = 1 m
( 1 0 cos Θ B n sin Θ B R y 1 )
b [ x , y ] , i = d 2 γ [ x , y ] , i n [ x , y ] , i .
M t , T L , R x = = ( 1 n 0 0 n ) ( cos b x , i ( d n x , i ) ( sin b x , i b x , i ) ( n x , i d ) b x , i sin b x , i cos b x , i ) i = 1 m
( n 0 0 1 n )
M s , T L , R y = = ( 1 0 0 1 ) ( cos b y , i ( d n y , i ) ( sin b y , i b y , i ) ( n y , i d ) b y , i sin b y , i cos b y , i ) i = 1 m
( 1 0 0 1 )
b [ x , y ] , i = d 2 γ [ x , y ] , i n [ x , y ] , i .

Metrics