Abstract

We demonstrate passive mode locking of solid-state lasers by saturable absorbers based on carbon nanotubes (CNT). These novel absorbers are fabricated by spin-coating a polymer doped with CNTs onto commercial dielectric laser-mirrors. We obtain broadband artificial saturable absorber mirrors with ultrafast recovery times without the use of epitaxial growth techniques and the well-established spin-coating process allows the fabrication of devices based on a large variety of substrate materials. First results on passive mode locking of Nd:glass and Er/Yb:glass lasers are discussed. In the case of Er/Yb:glass we report the to our knowledge shortest pulse generated in a self-starting configuration based on Er/Yb:bulk-glass: 68 fs (45 fs Fourier-limit) at 1570 nm wavelength at a pulse-repetition rate of 85 MHz.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. P. Ippen, �??Principle of Passive Mode Locking,�?? Appl. Phys B, 58, 159-170 (1994).
    [CrossRef]
  2. L. R. Brovelli, U. Keller, T. H. Chiu, �??Design and operation of antiresonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid state lasers,�?? J. Opt. Soc. Am. B 12, 311-322 (1995).
    [CrossRef]
  3. U. Siegner, R. Fluck, G. Zhang, U. Keller, "Ultrafast high-intensity nonlinear absorption dynamics in low-temperature grown gallium arsenide,�?? Appl. Phys. Lett. 69, 2566-8 (1996).
    [CrossRef]
  4. B. Collins, K. Bergmann, S. T. Cundiff, S. Tsuda, J. N. Kunz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, �??Short Cavity Erbium/Ytterbium fiber Lasers mode-Locked with a Saturable Bragg Reflector,�?? IEEE J. Sel. Top. Quantum Electron. 3, 1065 (1997).
    [CrossRef]
  5. H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, U. Keller, �??Role of implantation induced defects on the response time of semiconductor saturable absorbers,�?? Appl. Phys. Lett. 75, 1437-1439 (1999).
    [CrossRef]
  6. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang , X.-C. Zhang, �??Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,�?? Appl. Phys. Lett. 81, 975-977 (2002).
    [CrossRef]
  7. J-S. Lauret, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, O. Jost, L. Capes, �??Ultrafast carrier dynamics in single-wall carbon nanotubes,�?? Phys. Rev. Lett. 90, 057404 (2003).
    [CrossRef] [PubMed]
  8. S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, H. Mitsu, �??Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,�?? Adv. Mater. 15, 534 (2003).
    [CrossRef]
  9. Y. Sakakibara, S. Tatsuura, H. Kataura, M.Tokumoto, Y. Achiba, �??Near-infrared saturable absorption of single-wall carbon nanotubes prepared by laser ablation method,�?? Jpn. J. Appl. Phys. 42, 494-496 (2003).
    [CrossRef]
  10. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M.Tokumoto, H. Kataura, Y. Achiba, K. Kikuchi, �??Mode-locked Fiber Lasers based on a Saturable Absorber Incorporating Carbon Nanotubes,�?? OSA Trends in Optics and Photonics (TOPS) Vol.86, pd44, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2003).
  11. N. N. Il�??ichev, E. D. Obraztsova, S. V. Garnov, S. E. Mosaleva, �??Nonlinear transmission of single-wall carbon nanotubes in heavy water at wavelength of 1.54 μm and self-mode locking in a Er3+:glass laser obtained using a passive nanotube switch,�?? Quantum Electron. 34, 572-574 (2004).
    [CrossRef]
  12. Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, M. Tokumoto, Jpn. J. Appl. Phys. 44, 1621 (2005).
    [CrossRef]
  13. A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, �??Sub-200 fs pulsed erbium-doped fiber laser using a carbon nanotube- polyvinylalcohol mode-locker�??, in submission.
  14. G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, R. E. Smalley, �??Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,�?? Phys. Rev. Lett. 92, 117402 (2004).
    [CrossRef] [PubMed]
  15. Carbon Nanotubes: Synthesis, Structure, Properties, and Application, eds. M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer-Verlag, Berlin, 2001) Topics in Appl. Phys. Vol. 80 (2001).
    [CrossRef]
  16. H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Otsuka, R. Sen, S. Suzuki, Y. Achiba, Carbon 38, 1691(2000).
    [CrossRef]
  17. F. J. Grawert, J. T. Gopinath, F. �?�??. Ilday, H. M. Shen, E. P. Ippen, F. X. Kaertner, S. Akiyama, J. Liu, K. Wada, L. C. Kimerling, �??220-fs erbium-ytterbium:glass laser mode locked by a broadband low-loss silicon/germanium saturable absorber,�?? Opt. Lett. 30, 329-331 (2005).
    [CrossRef] [PubMed]

Adv. Mater.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, H. Mitsu, �??Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,�?? Adv. Mater. 15, 534 (2003).
[CrossRef]

Appl. Phys B

E. P. Ippen, �??Principle of Passive Mode Locking,�?? Appl. Phys B, 58, 159-170 (1994).
[CrossRef]

Appl. Phys. Lett.

U. Siegner, R. Fluck, G. Zhang, U. Keller, "Ultrafast high-intensity nonlinear absorption dynamics in low-temperature grown gallium arsenide,�?? Appl. Phys. Lett. 69, 2566-8 (1996).
[CrossRef]

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, U. Keller, �??Role of implantation induced defects on the response time of semiconductor saturable absorbers,�?? Appl. Phys. Lett. 75, 1437-1439 (1999).
[CrossRef]

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang , X.-C. Zhang, �??Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,�?? Appl. Phys. Lett. 81, 975-977 (2002).
[CrossRef]

Carbon

H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Otsuka, R. Sen, S. Suzuki, Y. Achiba, Carbon 38, 1691(2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. Collins, K. Bergmann, S. T. Cundiff, S. Tsuda, J. N. Kunz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. Knox, �??Short Cavity Erbium/Ytterbium fiber Lasers mode-Locked with a Saturable Bragg Reflector,�?? IEEE J. Sel. Top. Quantum Electron. 3, 1065 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Y. Sakakibara, S. Tatsuura, H. Kataura, M.Tokumoto, Y. Achiba, �??Near-infrared saturable absorption of single-wall carbon nanotubes prepared by laser ablation method,�?? Jpn. J. Appl. Phys. 42, 494-496 (2003).
[CrossRef]

Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, M. Tokumoto, Jpn. J. Appl. Phys. 44, 1621 (2005).
[CrossRef]

Opt. Lett.

OSA Trends in Optics and Photonics

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M.Tokumoto, H. Kataura, Y. Achiba, K. Kikuchi, �??Mode-locked Fiber Lasers based on a Saturable Absorber Incorporating Carbon Nanotubes,�?? OSA Trends in Optics and Photonics (TOPS) Vol.86, pd44, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2003).

Phys. Rev. Lett.

G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, R. E. Smalley, �??Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,�?? Phys. Rev. Lett. 92, 117402 (2004).
[CrossRef] [PubMed]

J-S. Lauret, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, O. Jost, L. Capes, �??Ultrafast carrier dynamics in single-wall carbon nanotubes,�?? Phys. Rev. Lett. 90, 057404 (2003).
[CrossRef] [PubMed]

Quantum Electron.

N. N. Il�??ichev, E. D. Obraztsova, S. V. Garnov, S. E. Mosaleva, �??Nonlinear transmission of single-wall carbon nanotubes in heavy water at wavelength of 1.54 μm and self-mode locking in a Er3+:glass laser obtained using a passive nanotube switch,�?? Quantum Electron. 34, 572-574 (2004).
[CrossRef]

Topics in Appl. Phys.

Carbon Nanotubes: Synthesis, Structure, Properties, and Application, eds. M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer-Verlag, Berlin, 2001) Topics in Appl. Phys. Vol. 80 (2001).
[CrossRef]

Other

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, �??Sub-200 fs pulsed erbium-doped fiber laser using a carbon nanotube- polyvinylalcohol mode-locker�??, in submission.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Absorption spectra of the CNT-polymer composite films. Solid line: CNTs made by the laser ablation method were dispersed into polyimide for use in Er/Yb:glass lasers. Dashed line: CoMoCAT CNTs were dispersed into CMC for Nd:glass use.

Fig. 2.
Fig. 2.

Experimental setup of the Er/Yb:glass laser. OC: output coupler; M1-M4: standard Bragg-mirrors; CNT-SAM: Saturable absorber mirror based on carbon nanotubes; LD: pigtailed laser diode for pumping the Er/Yb:glass (QX/Er, Kigre Inc., 4.8 mm path-length).

Fig. 3.
Fig. 3.

Left side: Optical spectrum emitted by the Er:Yb:glass laser mode-locked by the CNT-based saturable absorber mirror on a linear (dotted line) and logarithmic (solid line) scale. The Fourier-limit of the spectrum corresponds to 45 fs. Right side: Background-free autocorrelation. The solid line is a sech2 fit with a corresponding FWHM pulse-duration of 68 fs.

Metrics