Abstract

The dynamics of the second-order nonlinearity induced in a thermally poled InfrasilTM silica glass is experimentally and theoretically studied. 200 μm and 500 μm-thick samples have been poled for different durations varying from 1 minute to 100 minutes. After the poling process, the magnitude and the spatial distribution of the induced χ (2) susceptibility have been characterized accurately with the “layer peeling” method. A two-charge carrier model with an electric field dependant charge injection is used to explain the experimental time-evolution of the χ (2) profiles. A good agreement between experimental results and simulations is reported.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, �??Large second order nonlinearity in poled fused silica,�?? Opt. Lett. 16, 1732-1734 (1991).
    [CrossRef] [PubMed]
  2. P. G. Kazansky, and P. St. J. Russel, �??Thermally poled glass: frozen-in electric field or oriented dipoles?,�?? Opt. Commun. 110, 611-614 (1994).
    [CrossRef]
  3. D. Faccio, V. Pruneri, and P. G. Kazansky, �??Dynamics of the second order nonlinearity in thermally poled silica glass,�?? Appl. Phys. Lett. 79, 2687-2689 (2001).
    [CrossRef]
  4. A. Kudlinski, Y. Quiquempois, and G. Martinelli, �??Time evolution of the second-order nonlinear profile within thermally-poled silica samples,�?? Opt. Lett. 30, 1039-1041 (2005).
    [CrossRef] [PubMed]
  5. A. Von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, �??Photocurrent, space-charge buildup and field emission in alkali crystals,�?? Phys. Rev. 91, 568-579 (1953).
    [CrossRef]
  6. T. G. Alley, R. A. Myers, and S. R. J. Brueck, �??Space charge dynamics in thermally poled fused silica,�?? J. Non Cryst. Solids 242, 165-176 (1998).
    [CrossRef]
  7. A. Kudlinski, G. Martinelli, Y. Quiquempois, and H. Zeghlache, �??Microscopic model for the second order nonlinearity creation in thermally poled bulk silica glasses,�?? in OSA Proceedings of Bragg Gratings, Photosensitivity and Poling in GlassWaveguides: Applications and Fundamentals, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC3, Monterey, September 1-3, 2003.
  8. X. Liu, X. Sun, and M. Zhang, �??Theoretical analysis of thermal/electric field poling fused silica with multiple carrier model,�?? Jpn. J. Appl. Phys. 39, 4881-4883 (2000).
    [CrossRef]
  9. M. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, �??The thickness evolution of second order nonlinear layer in thermally poled fused silica,�?? Opt. Commun. 189, 161-166 (2001).
    [CrossRef]
  10. J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, �??Poling of silica with silver containing electrodes,�?? Electron. Lett. 36, 1635-1636 (2000).
    [CrossRef]
  11. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, �??Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a sub-micron resolution,�?? Appl. Phys. Lett. 83, 3623-3625 (2003).
    [CrossRef]
  12. W. Margulis, and F. Laurell, �??Interferometric study of poled glass under etching,�?? Opt. Lett. 21, 1786-1788 (1996).
    [CrossRef] [PubMed]
  13. Heraeus technical documentation, Transparent and Opaque Fused Silica, Heraeus Quartzschmelze GmbH, D-63450 Hanau 1, Germany.
  14. D. W. Shin and M. Tomozawa, �??Electrical and dielectric relaxation in silica glasses at low temperature,�?? J. Non Cryst. Solids 211, 237-249 (1997).
    [CrossRef]
  15. Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis and I.C.S. Carvalho, �??Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses,�?? Appl. Phys. Lett. 86, 181106 (2005).
    [CrossRef]

Appl. Phys. Lett. (3)

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, �??Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a sub-micron resolution,�?? Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis and I.C.S. Carvalho, �??Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses,�?? Appl. Phys. Lett. 86, 181106 (2005).
[CrossRef]

D. Faccio, V. Pruneri, and P. G. Kazansky, �??Dynamics of the second order nonlinearity in thermally poled silica glass,�?? Appl. Phys. Lett. 79, 2687-2689 (2001).
[CrossRef]

Electron. Lett. (1)

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, �??Poling of silica with silver containing electrodes,�?? Electron. Lett. 36, 1635-1636 (2000).
[CrossRef]

J. Non Cryst. Solids (2)

T. G. Alley, R. A. Myers, and S. R. J. Brueck, �??Space charge dynamics in thermally poled fused silica,�?? J. Non Cryst. Solids 242, 165-176 (1998).
[CrossRef]

D. W. Shin and M. Tomozawa, �??Electrical and dielectric relaxation in silica glasses at low temperature,�?? J. Non Cryst. Solids 211, 237-249 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

X. Liu, X. Sun, and M. Zhang, �??Theoretical analysis of thermal/electric field poling fused silica with multiple carrier model,�?? Jpn. J. Appl. Phys. 39, 4881-4883 (2000).
[CrossRef]

Opt. Commun. (2)

M. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, �??The thickness evolution of second order nonlinear layer in thermally poled fused silica,�?? Opt. Commun. 189, 161-166 (2001).
[CrossRef]

P. G. Kazansky, and P. St. J. Russel, �??Thermally poled glass: frozen-in electric field or oriented dipoles?,�?? Opt. Commun. 110, 611-614 (1994).
[CrossRef]

Opt. Lett. (3)

OSA Tops Series (1)

A. Kudlinski, G. Martinelli, Y. Quiquempois, and H. Zeghlache, �??Microscopic model for the second order nonlinearity creation in thermally poled bulk silica glasses,�?? in OSA Proceedings of Bragg Gratings, Photosensitivity and Poling in GlassWaveguides: Applications and Fundamentals, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC3, Monterey, September 1-3, 2003.

Phys. Rev. (1)

A. Von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, �??Photocurrent, space-charge buildup and field emission in alkali crystals,�?? Phys. Rev. 91, 568-579 (1953).
[CrossRef]

Other (1)

Heraeus technical documentation, Transparent and Opaque Fused Silica, Heraeus Quartzschmelze GmbH, D-63450 Hanau 1, Germany.

Supplementary Material (1)

» Media 1: MOV (2304 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) SON profiles experimentally obtained with the “layer peeling” method, for 200 μm-thick samples poled for 1, 3, 5, 15 and 45 minutes, and (b) the corresponding χ (2) spatial distributions obtained with the two-charge carrier model.

Fig. 2.
Fig. 2.

Time evolution of the χ (2) maximum value and of the nonlinear layer width for sample thicknesses of 200 μm (respectively (a) and (b)) and of 500 μm (respectively (c) and (d)). Squares corresponds to experimental data and solid lines represent numerical simulations performed with the two carrier model.

Fig. 3.
Fig. 3.

(a) SON profiles experimentally obtained with the “layer peeling” method, for 500 μm-thick samples poled for 1 [see insert], 5, 10, 30 and 100 minutes, and (b) the corresponding χ (2) spatial distributions obtained with the two-charge carrier model.

Fig. 4.
Fig. 4.

Results of simulations in a 200 μm-thick sample for a poling duration of 100 minutes. (a) Representation of the charge distribution (the black line corresponds to the sodium density and the red line represents the injected carrier density). (b) Schematization of the charge distribution (regions I and III are negatively charged, regions II and IV are neutral). (c) Resulting electric field distribution. The movie represents the time-evolution of the charge distribution and the resulting electric field for poling durations between 0 and 100 minutes (618 KB).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

χ ( 2 ) = 3 χ ( 3 ) E DC
p i t = μ i ( p i E ) x + D i 2 p i x 2
E x = e ε [ i ( p i p 0 , i ) ]
0 E d x = V app
( p 2 t ) | x = 0 = σ 2 E ( x = 0 )
τ = μ ε 2 N 0 e V app
E DC ( x ) = { E layer ( x ) for 0 x w E bulk ( x ) for w < x

Metrics