Abstract

The dynamics of the second-order nonlinearity induced in a thermally poled InfrasilTM silica glass is experimentally and theoretically studied. 200 μm and 500 μm-thick samples have been poled for different durations varying from 1 minute to 100 minutes. After the poling process, the magnitude and the spatial distribution of the induced χ (2) susceptibility have been characterized accurately with the “layer peeling” method. A two-charge carrier model with an electric field dependant charge injection is used to explain the experimental time-evolution of the χ (2) profiles. A good agreement between experimental results and simulations is reported.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Interferometric study of poled glass under etching

W. Margulis and F. Laurell
Opt. Lett. 21(21) 1786-1788 (1996)

Zero-potential condition in thermally poled silica samples: evidence of a negative electric field outside the depletion layer

Yves Quiquempois, Alexandre Kudlinski, and Gilbert Martinelli
J. Opt. Soc. Am. B 22(3) 598-604 (2005)

Time evolution of second-order nonlinear profiles induced within thermally poled silica samples

Alexandre Kudlinski, Gilbert Martinelli, and Yves Quiquempois
Opt. Lett. 30(9) 1039-1041 (2005)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
    [Crossref] [PubMed]
  2. P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611–614 (1994).
    [Crossref]
  3. D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
    [Crossref]
  4. A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Time evolution of the second-order nonlinear profile within thermally-poled silica samples,” Opt. Lett. 30, 1039–1041 (2005).
    [Crossref] [PubMed]
  5. A. Von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, “Photocurrent, space-charge buildup and field emission in alkali crystals,” Phys. Rev. 91, 568–579 (1953).
    [Crossref]
  6. T. G. Alley, R. A. Myers, and S. R. J. Brueck, “Space charge dynamics in thermally poled fused silica,” J. Non Cryst. Solids 242, 165–176 (1998).
    [Crossref]
  7. A. Kudlinski, G. Martinelli, Y. Quiquempois, and H. Zeghlache, “Microscopic model for the second order non-linearity creation in thermally poled bulk silica glasses,” in OSA Proceedings of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides: Applications and Fundamentals, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.,2003), paper TuC3, Monterey, September 1-3, 2003.
  8. X. Liu, X. Sun, and M. Zhang, “Theoretical analysis of thermal/electric field poling fused silica with multiple carrier model,” Jpn. J. Appl. Phys. 39, 4881–4883 (2000).
    [Crossref]
  9. M. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of second order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
    [Crossref]
  10. J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
    [Crossref]
  11. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a sub-micron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
    [Crossref]
  12. W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,” Opt. Lett. 21, 1786–1788 (1996).
    [Crossref] [PubMed]
  13. Heraeus technical documentation, Transparent and Opaque Fused Silica, Heraeus Quartzschmelze GmbH, D-63450 Hanau 1, Germany.
  14. D. W. Shin and M. Tomozawa, “Electrical and dielectric relaxation in silica glasses at low temperature,” J. Non Cryst. Solids 211, 237–249 (1997).
    [Crossref]
  15. Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis, and I.C.S. Carvalho, “Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses,” Appl. Phys. Lett. 86, 181106 (2005).
    [Crossref]

2005 (2)

Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis, and I.C.S. Carvalho, “Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses,” Appl. Phys. Lett. 86, 181106 (2005).
[Crossref]

A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Time evolution of the second-order nonlinear profile within thermally-poled silica samples,” Opt. Lett. 30, 1039–1041 (2005).
[Crossref] [PubMed]

2003 (1)

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a sub-micron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[Crossref]

2001 (2)

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[Crossref]

M. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of second order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
[Crossref]

2000 (2)

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[Crossref]

X. Liu, X. Sun, and M. Zhang, “Theoretical analysis of thermal/electric field poling fused silica with multiple carrier model,” Jpn. J. Appl. Phys. 39, 4881–4883 (2000).
[Crossref]

1998 (1)

T. G. Alley, R. A. Myers, and S. R. J. Brueck, “Space charge dynamics in thermally poled fused silica,” J. Non Cryst. Solids 242, 165–176 (1998).
[Crossref]

1997 (1)

D. W. Shin and M. Tomozawa, “Electrical and dielectric relaxation in silica glasses at low temperature,” J. Non Cryst. Solids 211, 237–249 (1997).
[Crossref]

1996 (1)

1994 (1)

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611–614 (1994).
[Crossref]

1991 (1)

1953 (1)

A. Von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, “Photocurrent, space-charge buildup and field emission in alkali crystals,” Phys. Rev. 91, 568–579 (1953).
[Crossref]

Alley, T. G.

T. G. Alley, R. A. Myers, and S. R. J. Brueck, “Space charge dynamics in thermally poled fused silica,” J. Non Cryst. Solids 242, 165–176 (1998).
[Crossref]

Arentoft, J.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[Crossref]

Bozhevolnyi, S. I.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[Crossref]

Brueck, S. R. J.

T. G. Alley, R. A. Myers, and S. R. J. Brueck, “Space charge dynamics in thermally poled fused silica,” J. Non Cryst. Solids 242, 165–176 (1998).
[Crossref]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
[Crossref] [PubMed]

Carvalho, I.C.S.

Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis, and I.C.S. Carvalho, “Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses,” Appl. Phys. Lett. 86, 181106 (2005).
[Crossref]

Egawa, S.

M. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of second order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
[Crossref]

Faccio, D.

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[Crossref]

Geller, M.

A. Von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, “Photocurrent, space-charge buildup and field emission in alkali crystals,” Phys. Rev. 91, 568–579 (1953).
[Crossref]

Gross, E. P.

A. Von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, “Photocurrent, space-charge buildup and field emission in alkali crystals,” Phys. Rev. 91, 568–579 (1953).
[Crossref]

Hippel, A. Von

A. Von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, “Photocurrent, space-charge buildup and field emission in alkali crystals,” Phys. Rev. 91, 568–579 (1953).
[Crossref]

Horimoto, K.

M. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of second order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
[Crossref]

Jelatis, J. G.

A. Von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, “Photocurrent, space-charge buildup and field emission in alkali crystals,” Phys. Rev. 91, 568–579 (1953).
[Crossref]

Kazansky, P. G.

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[Crossref]

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611–614 (1994).
[Crossref]

Kristensen, M.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[Crossref]

Kudlinski, A.

Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis, and I.C.S. Carvalho, “Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses,” Appl. Phys. Lett. 86, 181106 (2005).
[Crossref]

A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Time evolution of the second-order nonlinear profile within thermally-poled silica samples,” Opt. Lett. 30, 1039–1041 (2005).
[Crossref] [PubMed]

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a sub-micron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[Crossref]

A. Kudlinski, G. Martinelli, Y. Quiquempois, and H. Zeghlache, “Microscopic model for the second order non-linearity creation in thermally poled bulk silica glasses,” in OSA Proceedings of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides: Applications and Fundamentals, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.,2003), paper TuC3, Monterey, September 1-3, 2003.

Laurell, F.

Lelek, M.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a sub-micron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[Crossref]

Liu, X.

X. Liu, X. Sun, and M. Zhang, “Theoretical analysis of thermal/electric field poling fused silica with multiple carrier model,” Jpn. J. Appl. Phys. 39, 4881–4883 (2000).
[Crossref]

Margulis, W.

Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis, and I.C.S. Carvalho, “Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses,” Appl. Phys. Lett. 86, 181106 (2005).
[Crossref]

W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,” Opt. Lett. 21, 1786–1788 (1996).
[Crossref] [PubMed]

Martinelli, G.

A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Time evolution of the second-order nonlinear profile within thermally-poled silica samples,” Opt. Lett. 30, 1039–1041 (2005).
[Crossref] [PubMed]

Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis, and I.C.S. Carvalho, “Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses,” Appl. Phys. Lett. 86, 181106 (2005).
[Crossref]

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a sub-micron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[Crossref]

A. Kudlinski, G. Martinelli, Y. Quiquempois, and H. Zeghlache, “Microscopic model for the second order non-linearity creation in thermally poled bulk silica glasses,” in OSA Proceedings of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides: Applications and Fundamentals, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.,2003), paper TuC3, Monterey, September 1-3, 2003.

Mizunami, T.

M. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of second order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
[Crossref]

Mukherjee, N.

Myers, R. A.

T. G. Alley, R. A. Myers, and S. R. J. Brueck, “Space charge dynamics in thermally poled fused silica,” J. Non Cryst. Solids 242, 165–176 (1998).
[Crossref]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
[Crossref] [PubMed]

Pedersen, K.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[Crossref]

Pruneri, V.

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[Crossref]

Qiu, M.

M. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of second order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
[Crossref]

Quiquempois, Y.

Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis, and I.C.S. Carvalho, “Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses,” Appl. Phys. Lett. 86, 181106 (2005).
[Crossref]

A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Time evolution of the second-order nonlinear profile within thermally-poled silica samples,” Opt. Lett. 30, 1039–1041 (2005).
[Crossref] [PubMed]

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a sub-micron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[Crossref]

A. Kudlinski, G. Martinelli, Y. Quiquempois, and H. Zeghlache, “Microscopic model for the second order non-linearity creation in thermally poled bulk silica glasses,” in OSA Proceedings of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides: Applications and Fundamentals, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.,2003), paper TuC3, Monterey, September 1-3, 2003.

Russel, P. St. J.

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611–614 (1994).
[Crossref]

Shi, P.

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[Crossref]

Shin, D. W.

D. W. Shin and M. Tomozawa, “Electrical and dielectric relaxation in silica glasses at low temperature,” J. Non Cryst. Solids 211, 237–249 (1997).
[Crossref]

Sun, X.

X. Liu, X. Sun, and M. Zhang, “Theoretical analysis of thermal/electric field poling fused silica with multiple carrier model,” Jpn. J. Appl. Phys. 39, 4881–4883 (2000).
[Crossref]

Tomozawa, M.

D. W. Shin and M. Tomozawa, “Electrical and dielectric relaxation in silica glasses at low temperature,” J. Non Cryst. Solids 211, 237–249 (1997).
[Crossref]

Zeghlache, H.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a sub-micron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[Crossref]

A. Kudlinski, G. Martinelli, Y. Quiquempois, and H. Zeghlache, “Microscopic model for the second order non-linearity creation in thermally poled bulk silica glasses,” in OSA Proceedings of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides: Applications and Fundamentals, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.,2003), paper TuC3, Monterey, September 1-3, 2003.

Zhang, M.

X. Liu, X. Sun, and M. Zhang, “Theoretical analysis of thermal/electric field poling fused silica with multiple carrier model,” Jpn. J. Appl. Phys. 39, 4881–4883 (2000).
[Crossref]

Appl. Phys. Lett. (3)

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a sub-micron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[Crossref]

Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis, and I.C.S. Carvalho, “Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses,” Appl. Phys. Lett. 86, 181106 (2005).
[Crossref]

D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[Crossref]

Electron. Lett. (1)

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, “Poling of silica with silver containing electrodes,” Electron. Lett. 36, 1635–1636 (2000).
[Crossref]

J. Non Cryst. Solids (2)

T. G. Alley, R. A. Myers, and S. R. J. Brueck, “Space charge dynamics in thermally poled fused silica,” J. Non Cryst. Solids 242, 165–176 (1998).
[Crossref]

D. W. Shin and M. Tomozawa, “Electrical and dielectric relaxation in silica glasses at low temperature,” J. Non Cryst. Solids 211, 237–249 (1997).
[Crossref]

Jpn. J. Appl. Phys. (1)

X. Liu, X. Sun, and M. Zhang, “Theoretical analysis of thermal/electric field poling fused silica with multiple carrier model,” Jpn. J. Appl. Phys. 39, 4881–4883 (2000).
[Crossref]

Opt. Commun. (2)

M. Qiu, S. Egawa, K. Horimoto, and T. Mizunami, “The thickness evolution of second order nonlinear layer in thermally poled fused silica,” Opt. Commun. 189, 161–166 (2001).
[Crossref]

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611–614 (1994).
[Crossref]

Opt. Lett. (3)

Phys. Rev. (1)

A. Von Hippel, E. P. Gross, J. G. Jelatis, and M. Geller, “Photocurrent, space-charge buildup and field emission in alkali crystals,” Phys. Rev. 91, 568–579 (1953).
[Crossref]

Other (2)

A. Kudlinski, G. Martinelli, Y. Quiquempois, and H. Zeghlache, “Microscopic model for the second order non-linearity creation in thermally poled bulk silica glasses,” in OSA Proceedings of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides: Applications and Fundamentals, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.,2003), paper TuC3, Monterey, September 1-3, 2003.

Heraeus technical documentation, Transparent and Opaque Fused Silica, Heraeus Quartzschmelze GmbH, D-63450 Hanau 1, Germany.

Supplementary Material (1)

» Media 1: MOV (2304 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) SON profiles experimentally obtained with the “layer peeling” method, for 200 μm-thick samples poled for 1, 3, 5, 15 and 45 minutes, and (b) the corresponding χ (2) spatial distributions obtained with the two-charge carrier model.

Fig. 2.
Fig. 2.

Time evolution of the χ (2) maximum value and of the nonlinear layer width for sample thicknesses of 200 μm (respectively (a) and (b)) and of 500 μm (respectively (c) and (d)). Squares corresponds to experimental data and solid lines represent numerical simulations performed with the two carrier model.

Fig. 3.
Fig. 3.

(a) SON profiles experimentally obtained with the “layer peeling” method, for 500 μm-thick samples poled for 1 [see insert], 5, 10, 30 and 100 minutes, and (b) the corresponding χ (2) spatial distributions obtained with the two-charge carrier model.

Fig. 4.
Fig. 4.

Results of simulations in a 200 μm-thick sample for a poling duration of 100 minutes. (a) Representation of the charge distribution (the black line corresponds to the sodium density and the red line represents the injected carrier density). (b) Schematization of the charge distribution (regions I and III are negatively charged, regions II and IV are neutral). (c) Resulting electric field distribution. The movie represents the time-evolution of the charge distribution and the resulting electric field for poling durations between 0 and 100 minutes (618 KB).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

χ ( 2 ) = 3 χ ( 3 ) E DC
p i t = μ i ( p i E ) x + D i 2 p i x 2
E x = e ε [ i ( p i p 0 , i ) ]
0 E d x = V app
( p 2 t ) | x = 0 = σ 2 E ( x = 0 )
τ = μ ε 2 N 0 e V app
E DC ( x ) = { E layer ( x ) for 0 x w E bulk ( x ) for w < x

Metrics