Abstract

In this paper, we present an InP-based micromechanically tunable VCSEL emitting in the 1.55μm wavelength region with a 26nm tuning range. The laser is based on a two-chip concept, allowing for a separate optimization of the curved top mirror and the amplifying component. Current confinement is achieved by a buried tunnel junction. The design of the microcavity ensures fundamental mode operation with a side mode suppression ratio exceeding 49dB even for large apertures. Simulations indicate that the tuning range is limited by coupled cavity effects and reveal important design criteria like an upper boundary regarding the device thickness.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
GaSb-based vertical-cavity surface-emitting lasers with an emission wavelength at 3 μm

Alexander Andrejew, Stephan Sprengel, and Markus-Christian Amann
Opt. Lett. 41(12) 2799-2802 (2016)

AlGaAs/GaAs/InGaAs pnp-type vertical-cavity surface-emitting transistor-lasers

Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammar, and M.N. Akram
Opt. Express 23(12) 15680-15699 (2015)

Polarization-resolved characterization of long-wavelength vertical-cavity surface-emitting laser parameters

P. Pérez, A. Valle, and L. Pesquera
J. Opt. Soc. Am. B 31(11) 2574-2580 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Sugihwo, M. C. Larson, and J. S. Harris, “Simultaneous optimization of membrane reflectance and tuning voltage for tunable vertical cavity lasers,” Appl. Phys. Lett. 72, 10–12 (1998).
    [Crossref]
  2. A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
    [Crossref]
  3. P. Wang, P. Tayebati, D. Vakhshoori, C.-C. Lu, and R. N. Sacks, “Half-symmetric cavity microelectromechani-cally tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897–898 (1999).
    [Crossref]
  4. J. Boucart, R. Pathak, D. Zhang, M. Beaudoin, P. Kner, D. Sun, R. J. Stone, R. F. Nabiev, and W. Yuen, “Long wavelength MEMS tunable VCSEL with InP-InAlGaAs bottom DBR,” IEEE Photonics Technol. Lett. 15, 1186–1188 (2003).
    [Crossref]
  5. A. Bousseksou, M.E. Kurdi, M.D. Salik, I. Sagnes, and S. Bouchoule, “Wavelength tunable InP-based EP-VECSEL operating at room temperature and in CW at 1.55-μm,” IEE Electron. Lett. 40, 1490–1491 (2004).
    [Crossref]
  6. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M.-C. Amann, “Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76, 2179–2181 (2000).
    [Crossref]
  7. F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
    [Crossref]
  8. M. Ortsiefer, M. Förfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” IEE Electron. Lett. 39, 1731–1732 (2003).
    [Crossref]
  9. G. D. Cole, E. S. Bjrlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41, 390–407 (2005).
    [Crossref]
  10. S. Riyopoulos and H. Unold, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” J. Lightwave Technol. 20, 1173- (2002).
    [Crossref]
  11. B. Kogel, M. Maute, H. Halbritter, S. Jatta, G. Bohm, M. -C., and P. Meissner, “High singlemode output power from longwavelength VCSELs using curved micromirrors for mode control” IEE Electron. Lett. 41, 43–44 (2005).
    [Crossref]

2005 (2)

G. D. Cole, E. S. Bjrlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41, 390–407 (2005).
[Crossref]

B. Kogel, M. Maute, H. Halbritter, S. Jatta, G. Bohm, M. -C., and P. Meissner, “High singlemode output power from longwavelength VCSELs using curved micromirrors for mode control” IEE Electron. Lett. 41, 43–44 (2005).
[Crossref]

2004 (3)

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

A. Bousseksou, M.E. Kurdi, M.D. Salik, I. Sagnes, and S. Bouchoule, “Wavelength tunable InP-based EP-VECSEL operating at room temperature and in CW at 1.55-μm,” IEE Electron. Lett. 40, 1490–1491 (2004).
[Crossref]

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[Crossref]

2003 (2)

M. Ortsiefer, M. Förfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” IEE Electron. Lett. 39, 1731–1732 (2003).
[Crossref]

J. Boucart, R. Pathak, D. Zhang, M. Beaudoin, P. Kner, D. Sun, R. J. Stone, R. F. Nabiev, and W. Yuen, “Long wavelength MEMS tunable VCSEL with InP-InAlGaAs bottom DBR,” IEEE Photonics Technol. Lett. 15, 1186–1188 (2003).
[Crossref]

2002 (1)

2000 (1)

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M.-C. Amann, “Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76, 2179–2181 (2000).
[Crossref]

1999 (1)

P. Wang, P. Tayebati, D. Vakhshoori, C.-C. Lu, and R. N. Sacks, “Half-symmetric cavity microelectromechani-cally tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897–898 (1999).
[Crossref]

1998 (1)

F. Sugihwo, M. C. Larson, and J. S. Harris, “Simultaneous optimization of membrane reflectance and tuning voltage for tunable vertical cavity lasers,” Appl. Phys. Lett. 72, 10–12 (1998).
[Crossref]

Achtenhagen, M.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

Amann, M.-C.

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[Crossref]

M. Ortsiefer, M. Förfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” IEE Electron. Lett. 39, 1731–1732 (2003).
[Crossref]

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M.-C. Amann, “Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76, 2179–2181 (2000).
[Crossref]

Beaudoin, M.

J. Boucart, R. Pathak, D. Zhang, M. Beaudoin, P. Kner, D. Sun, R. J. Stone, R. F. Nabiev, and W. Yuen, “Long wavelength MEMS tunable VCSEL with InP-InAlGaAs bottom DBR,” IEEE Photonics Technol. Lett. 15, 1186–1188 (2003).
[Crossref]

Berseth, C.-A.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

Bjrlin, E. S.

G. D. Cole, E. S. Bjrlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41, 390–407 (2005).
[Crossref]

Bohm, G.

B. Kogel, M. Maute, H. Halbritter, S. Jatta, G. Bohm, M. -C., and P. Meissner, “High singlemode output power from longwavelength VCSELs using curved micromirrors for mode control” IEE Electron. Lett. 41, 43–44 (2005).
[Crossref]

Böhm, G.

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[Crossref]

M. Ortsiefer, M. Förfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” IEE Electron. Lett. 39, 1731–1732 (2003).
[Crossref]

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M.-C. Amann, “Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76, 2179–2181 (2000).
[Crossref]

Boucart, J.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

J. Boucart, R. Pathak, D. Zhang, M. Beaudoin, P. Kner, D. Sun, R. J. Stone, R. F. Nabiev, and W. Yuen, “Long wavelength MEMS tunable VCSEL with InP-InAlGaAs bottom DBR,” IEEE Photonics Technol. Lett. 15, 1186–1188 (2003).
[Crossref]

Bouchoule, S.

A. Bousseksou, M.E. Kurdi, M.D. Salik, I. Sagnes, and S. Bouchoule, “Wavelength tunable InP-based EP-VECSEL operating at room temperature and in CW at 1.55-μm,” IEE Electron. Lett. 40, 1490–1491 (2004).
[Crossref]

Bousseksou, A.

A. Bousseksou, M.E. Kurdi, M.D. Salik, I. Sagnes, and S. Bouchoule, “Wavelength tunable InP-based EP-VECSEL operating at room temperature and in CW at 1.55-μm,” IEE Electron. Lett. 40, 1490–1491 (2004).
[Crossref]

Bowers, J. E.

G. D. Cole, E. S. Bjrlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41, 390–407 (2005).
[Crossref]

-C., M.

B. Kogel, M. Maute, H. Halbritter, S. Jatta, G. Bohm, M. -C., and P. Meissner, “High singlemode output power from longwavelength VCSELs using curved micromirrors for mode control” IEE Electron. Lett. 41, 43–44 (2005).
[Crossref]

Caliman, A.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

Chan, C.-Y.

G. D. Cole, E. S. Bjrlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41, 390–407 (2005).
[Crossref]

Chen, Q.

G. D. Cole, E. S. Bjrlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41, 390–407 (2005).
[Crossref]

Cole, G. D.

G. D. Cole, E. S. Bjrlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41, 390–407 (2005).
[Crossref]

Förfanger, M.

M. Ortsiefer, M. Förfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” IEE Electron. Lett. 39, 1731–1732 (2003).
[Crossref]

Halbritter, H.

B. Kogel, M. Maute, H. Halbritter, S. Jatta, G. Bohm, M. -C., and P. Meissner, “High singlemode output power from longwavelength VCSELs using curved micromirrors for mode control” IEE Electron. Lett. 41, 43–44 (2005).
[Crossref]

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[Crossref]

Harris, J. S.

F. Sugihwo, M. C. Larson, and J. S. Harris, “Simultaneous optimization of membrane reflectance and tuning voltage for tunable vertical cavity lasers,” Appl. Phys. Lett. 72, 10–12 (1998).
[Crossref]

Hofmann, W.

M. Ortsiefer, M. Förfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” IEE Electron. Lett. 39, 1731–1732 (2003).
[Crossref]

Iakovlev, V.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

Jatta, S.

B. Kogel, M. Maute, H. Halbritter, S. Jatta, G. Bohm, M. -C., and P. Meissner, “High singlemode output power from longwavelength VCSELs using curved micromirrors for mode control” IEE Electron. Lett. 41, 43–44 (2005).
[Crossref]

Kapon, E.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

Kner, P.

J. Boucart, R. Pathak, D. Zhang, M. Beaudoin, P. Kner, D. Sun, R. J. Stone, R. F. Nabiev, and W. Yuen, “Long wavelength MEMS tunable VCSEL with InP-InAlGaAs bottom DBR,” IEEE Photonics Technol. Lett. 15, 1186–1188 (2003).
[Crossref]

Kogel, B.

B. Kogel, M. Maute, H. Halbritter, S. Jatta, G. Bohm, M. -C., and P. Meissner, “High singlemode output power from longwavelength VCSELs using curved micromirrors for mode control” IEE Electron. Lett. 41, 43–44 (2005).
[Crossref]

Köhler, F.

M. Ortsiefer, M. Förfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” IEE Electron. Lett. 39, 1731–1732 (2003).
[Crossref]

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M.-C. Amann, “Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76, 2179–2181 (2000).
[Crossref]

Kurdi, M.E.

A. Bousseksou, M.E. Kurdi, M.D. Salik, I. Sagnes, and S. Bouchoule, “Wavelength tunable InP-based EP-VECSEL operating at room temperature and in CW at 1.55-μm,” IEE Electron. Lett. 40, 1490–1491 (2004).
[Crossref]

Larson, M. C.

F. Sugihwo, M. C. Larson, and J. S. Harris, “Simultaneous optimization of membrane reflectance and tuning voltage for tunable vertical cavity lasers,” Appl. Phys. Lett. 72, 10–12 (1998).
[Crossref]

Lauer, C.

M. Ortsiefer, M. Förfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” IEE Electron. Lett. 39, 1731–1732 (2003).
[Crossref]

Lu, C.-C.

P. Wang, P. Tayebati, D. Vakhshoori, C.-C. Lu, and R. N. Sacks, “Half-symmetric cavity microelectromechani-cally tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897–898 (1999).
[Crossref]

MacDonald, N. C.

G. D. Cole, E. S. Bjrlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41, 390–407 (2005).
[Crossref]

Maute, M.

B. Kogel, M. Maute, H. Halbritter, S. Jatta, G. Bohm, M. -C., and P. Meissner, “High singlemode output power from longwavelength VCSELs using curved micromirrors for mode control” IEE Electron. Lett. 41, 43–44 (2005).
[Crossref]

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[Crossref]

M. Ortsiefer, M. Förfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” IEE Electron. Lett. 39, 1731–1732 (2003).
[Crossref]

Meissner, P.

B. Kogel, M. Maute, H. Halbritter, S. Jatta, G. Bohm, M. -C., and P. Meissner, “High singlemode output power from longwavelength VCSELs using curved micromirrors for mode control” IEE Electron. Lett. 41, 43–44 (2005).
[Crossref]

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[Crossref]

Mereuta, A.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

Mircea, A.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

Nabiev, R. F.

J. Boucart, R. Pathak, D. Zhang, M. Beaudoin, P. Kner, D. Sun, R. J. Stone, R. F. Nabiev, and W. Yuen, “Long wavelength MEMS tunable VCSEL with InP-InAlGaAs bottom DBR,” IEEE Photonics Technol. Lett. 15, 1186–1188 (2003).
[Crossref]

Ortsiefer, M.

M. Ortsiefer, M. Förfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” IEE Electron. Lett. 39, 1731–1732 (2003).
[Crossref]

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M.-C. Amann, “Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76, 2179–2181 (2000).
[Crossref]

Pathak, R.

J. Boucart, R. Pathak, D. Zhang, M. Beaudoin, P. Kner, D. Sun, R. J. Stone, R. F. Nabiev, and W. Yuen, “Long wavelength MEMS tunable VCSEL with InP-InAlGaAs bottom DBR,” IEEE Photonics Technol. Lett. 15, 1186–1188 (2003).
[Crossref]

Riemenschneider, F.

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[Crossref]

Riyopoulos, S.

Rosskopf, J.

M. Ortsiefer, M. Förfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” IEE Electron. Lett. 39, 1731–1732 (2003).
[Crossref]

Rudra, A.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

Sacks, R. N.

P. Wang, P. Tayebati, D. Vakhshoori, C.-C. Lu, and R. N. Sacks, “Half-symmetric cavity microelectromechani-cally tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897–898 (1999).
[Crossref]

Sagnes, I.

A. Bousseksou, M.E. Kurdi, M.D. Salik, I. Sagnes, and S. Bouchoule, “Wavelength tunable InP-based EP-VECSEL operating at room temperature and in CW at 1.55-μm,” IEE Electron. Lett. 40, 1490–1491 (2004).
[Crossref]

Salik, M.D.

A. Bousseksou, M.E. Kurdi, M.D. Salik, I. Sagnes, and S. Bouchoule, “Wavelength tunable InP-based EP-VECSEL operating at room temperature and in CW at 1.55-μm,” IEE Electron. Lett. 40, 1490–1491 (2004).
[Crossref]

Shau, R.

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M.-C. Amann, “Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76, 2179–2181 (2000).
[Crossref]

Stone, R. J.

J. Boucart, R. Pathak, D. Zhang, M. Beaudoin, P. Kner, D. Sun, R. J. Stone, R. F. Nabiev, and W. Yuen, “Long wavelength MEMS tunable VCSEL with InP-InAlGaAs bottom DBR,” IEEE Photonics Technol. Lett. 15, 1186–1188 (2003).
[Crossref]

Sugihwo, F.

F. Sugihwo, M. C. Larson, and J. S. Harris, “Simultaneous optimization of membrane reflectance and tuning voltage for tunable vertical cavity lasers,” Appl. Phys. Lett. 72, 10–12 (1998).
[Crossref]

Sun, D.

J. Boucart, R. Pathak, D. Zhang, M. Beaudoin, P. Kner, D. Sun, R. J. Stone, R. F. Nabiev, and W. Yuen, “Long wavelength MEMS tunable VCSEL with InP-InAlGaAs bottom DBR,” IEEE Photonics Technol. Lett. 15, 1186–1188 (2003).
[Crossref]

Suruceanu, G.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

Syrbu, A.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

Tadeoni, S.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

Tayebati, P.

P. Wang, P. Tayebati, D. Vakhshoori, C.-C. Lu, and R. N. Sacks, “Half-symmetric cavity microelectromechani-cally tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897–898 (1999).
[Crossref]

Unold, H.

Vakhshoori, D.

P. Wang, P. Tayebati, D. Vakhshoori, C.-C. Lu, and R. N. Sacks, “Half-symmetric cavity microelectromechani-cally tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897–898 (1999).
[Crossref]

Wang, C. S.

G. D. Cole, E. S. Bjrlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41, 390–407 (2005).
[Crossref]

Wang, P.

P. Wang, P. Tayebati, D. Vakhshoori, C.-C. Lu, and R. N. Sacks, “Half-symmetric cavity microelectromechani-cally tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897–898 (1999).
[Crossref]

Wu, S.

G. D. Cole, E. S. Bjrlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41, 390–407 (2005).
[Crossref]

Yuen, W.

J. Boucart, R. Pathak, D. Zhang, M. Beaudoin, P. Kner, D. Sun, R. J. Stone, R. F. Nabiev, and W. Yuen, “Long wavelength MEMS tunable VCSEL with InP-InAlGaAs bottom DBR,” IEEE Photonics Technol. Lett. 15, 1186–1188 (2003).
[Crossref]

Zhang, D.

J. Boucart, R. Pathak, D. Zhang, M. Beaudoin, P. Kner, D. Sun, R. J. Stone, R. F. Nabiev, and W. Yuen, “Long wavelength MEMS tunable VCSEL with InP-InAlGaAs bottom DBR,” IEEE Photonics Technol. Lett. 15, 1186–1188 (2003).
[Crossref]

Appl. Phys. Lett. (3)

F. Sugihwo, M. C. Larson, and J. S. Harris, “Simultaneous optimization of membrane reflectance and tuning voltage for tunable vertical cavity lasers,” Appl. Phys. Lett. 72, 10–12 (1998).
[Crossref]

P. Wang, P. Tayebati, D. Vakhshoori, C.-C. Lu, and R. N. Sacks, “Half-symmetric cavity microelectromechani-cally tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm,” Appl. Phys. Lett. 75, 897–898 (1999).
[Crossref]

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M.-C. Amann, “Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76, 2179–2181 (2000).
[Crossref]

IEE Electron. Lett. (3)

M. Ortsiefer, M. Förfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” IEE Electron. Lett. 39, 1731–1732 (2003).
[Crossref]

B. Kogel, M. Maute, H. Halbritter, S. Jatta, G. Bohm, M. -C., and P. Meissner, “High singlemode output power from longwavelength VCSELs using curved micromirrors for mode control” IEE Electron. Lett. 41, 43–44 (2005).
[Crossref]

A. Bousseksou, M.E. Kurdi, M.D. Salik, I. Sagnes, and S. Bouchoule, “Wavelength tunable InP-based EP-VECSEL operating at room temperature and in CW at 1.55-μm,” IEE Electron. Lett. 40, 1490–1491 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

G. D. Cole, E. S. Bjrlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “MEMS-tunable vertical-cavity SOAs,” IEEE J. Quantum Electron. 41, 390–407 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (3)

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photonics Technol. Lett. 16, 2212–2214 (2004).
[Crossref]

J. Boucart, R. Pathak, D. Zhang, M. Beaudoin, P. Kner, D. Sun, R. J. Stone, R. F. Nabiev, and W. Yuen, “Long wavelength MEMS tunable VCSEL with InP-InAlGaAs bottom DBR,” IEEE Photonics Technol. Lett. 15, 1186–1188 (2003).
[Crossref]

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, “1.55-μm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range,” IEEE Photonics Technol. Lett. 16, 1991–1993 (2004).
[Crossref]

J. Lightwave Technol. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic cross section of a tunable two-chip VCSEL with a buried tunnel junction (BTJ) for current confinement. The sketch at the right of the cross section indicates the three-mirror-configuration with the reflectivity R A/B/C and the length of the cavities L air/SC .
Fig. 2.
Fig. 2. Typical laser spectra for three different tuning currents of I 1=0mA, I 2=6mA, and I 3=8.9mA. The envelope indicates the maximum output power during tuning with a constant driving current of 20mA.
Fig. 3.
Fig. 3. Tuning behavior for a device with a BTJ diameter of 10μm. a) Experimental laser wavelength vs. square of the tuning current (red symbols) and theoretical wavelength shift vs. membrane displacement (black line). b) Maximum fiber coupled power and threshold current plotted versus laser wavelength.
Fig. 4.
Fig. 4. Simulations of the change in threshold gain and the resonance wavelength for a given membrane displacement compared to the non-detuned case based on the transfer matrix formalism.
Fig. 5.
Fig. 5. Experimental and theoretical data for the tuning range plotted versus the inverse length of the half VCSEL. To obtain the theoretical data, a maximum increase of 50% in threshold gain compared to the non-detuned case was assumed. The line is just a guide to the eye.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FWHM = FSR · 1 R A · R B π R A · R B λ 2 2 L SC · 1 R A · R B π R A · R B 1 L SC

Metrics