Abstract

By means of both finite elements and FDTD calculations, we demonstrate that a structure of photonic crystal, constituted by two dimensional arrays of dielectric cylinders in air, or viceversa, previously proposed as capable of producing negative refraction with superlensing properties and subsequently proved to lack this characteristic, do possesses however the property of giving rise to effects of total internal reflection that allow both waveguiding, bending and collimation with high intensity subwavelength concentration of wavefronts. This is a consequence of both the dominant propagation along the ΓM direction due to diffraction, and of intensity localization in the cylinder regions as a result of the operating frequency being in the lower part of the bandgap, namely, in the so-called dielectric band.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Negative refraction without negative index in metallic photonic crystals

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry
Opt. Express 11(7) 746-754 (2003)

Analysis of wave focusing inside a negative-index photonic-crystal slab

Alejandro Martínez and Javier Martí
Opt. Express 13(8) 2858-2868 (2005)

1-D slab photonic crystal k-vector superprism demultiplexer: analysis, and design

Aref Bakhtazad and Andrew G. Kirk
Opt. Express 13(14) 5472-5482 (2005)

References

  • View by:
  • |
  • |
  • |

  1. V.G. Veselago, “The electrodynamics of substances with simultanenous negative values of ε and μ,” Sov. Phys. Usp. 10,509–514 (1968).
    [Crossref]
  2. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theor. Techn. MTT-47, 195–225 (1999).
  3. R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  4. A.A. Houck, J.B. Brock, and I.L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90, 137401 (2003).
    [Crossref] [PubMed]
  5. C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbach, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90, 107401–107404 (2003).
    [Crossref] [PubMed]
  6. N. Garcia and M. Nieto-Vesperinas, “Is there an experimental verification of a negative index of refraction yet?,” Opt. Lett. 27, 885–887 (2002).
    [Crossref]
  7. N.-C. Panoiu and R. M. Osgood, “Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials,” Phys. Rev. E 68, 016611 (2003).
    [Crossref]
  8. J.B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  9. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403–207406 (2002).
    [Crossref] [PubMed]
  10. M. Nieto-Vesperinas, “Problem of image superresolution with a negative-refractive-index slab,” J.Opt.Soc.Am. A,  21, 491 (2004)
    [Crossref]
  11. V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75 (2005)
    [Crossref] [PubMed]
  12. R. Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl. Phys. Lett. 84, 1290 (2004)
    [Crossref]
  13. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003).
    [Crossref]
  14. A. Grbic and G. V. Eleftheriades, “Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens,” Phys. Rev. Lett. 92, 117403 (2004)
    [Crossref] [PubMed]
  15. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000)
    [Crossref]
  16. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J.B. Pendry, “All-angle negative refrction without negative effective index,” Phys. Rev. B 65, 201104 (2002)
    [Crossref]
  17. P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals,” Phys. Rev. Lett. 92, 127401 (2004)
    [Crossref] [PubMed]
  18. B. Gralak, S. Enoch, and G. Tayeb “Anomalous refractive properties of photonic crystals,” J.Opt.Soc.Am. A 17, 1012 (2000)
    [Crossref]
  19. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature 426, 404 (2003)
    [Crossref] [PubMed]
  20. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou1, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003)
    [Crossref] [PubMed]
  21. Hung-Ta Chien, Hui-Ting Tang, Chao-Hsien Kuo, Chii-Chang Chen, and Zhen Ye, “Directed diffraction without negative refraction,” Phys. Rev. B 70, 113101 (2004)
    [Crossref]
  22. Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003)
    [Crossref]
  23. X. Wang, Z.F. Ren, and K. Kempa “Unrestricted superlensing in a triangular two-dimensional photonic crystal,” Opt. Express 12, 2919 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2919
    [Crossref] [PubMed]
  24. X. Wang, Z.F. Ren, and K. Kempa “Improved superlensing in two-dimensional photonic crystals with a basis,” Appl. Phys. Lett. 86, 061105 (2005).
    [Crossref]
  25. C. Caloz, C.-C. Chang, and T. Itoh, “Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,” J.Appl.Phys. 90, 5483–5486(2001).
    [Crossref]
  26. J. L. Garcia-Pomar and M. Nieto-Vesperinas, “Transmission study of prisms and slabs of lossy negative index media,” Opt. Express 12, 2081 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2081
    [Crossref] [PubMed]
  27. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J.Opt.Soc.Am. B,  10, 322 (1993)
    [Crossref]

2005 (2)

X. Wang, Z.F. Ren, and K. Kempa “Improved superlensing in two-dimensional photonic crystals with a basis,” Appl. Phys. Lett. 86, 061105 (2005).
[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75 (2005)
[Crossref] [PubMed]

2004 (7)

Hung-Ta Chien, Hui-Ting Tang, Chao-Hsien Kuo, Chii-Chang Chen, and Zhen Ye, “Directed diffraction without negative refraction,” Phys. Rev. B 70, 113101 (2004)
[Crossref]

J. L. Garcia-Pomar and M. Nieto-Vesperinas, “Transmission study of prisms and slabs of lossy negative index media,” Opt. Express 12, 2081 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2081
[Crossref] [PubMed]

X. Wang, Z.F. Ren, and K. Kempa “Unrestricted superlensing in a triangular two-dimensional photonic crystal,” Opt. Express 12, 2919 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2919
[Crossref] [PubMed]

M. Nieto-Vesperinas, “Problem of image superresolution with a negative-refractive-index slab,” J.Opt.Soc.Am. A,  21, 491 (2004)
[Crossref]

R. Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl. Phys. Lett. 84, 1290 (2004)
[Crossref]

A. Grbic and G. V. Eleftheriades, “Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens,” Phys. Rev. Lett. 92, 117403 (2004)
[Crossref] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals,” Phys. Rev. Lett. 92, 127401 (2004)
[Crossref] [PubMed]

2003 (7)

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature 426, 404 (2003)
[Crossref] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou1, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003)
[Crossref] [PubMed]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003).
[Crossref]

A.A. Houck, J.B. Brock, and I.L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90, 137401 (2003).
[Crossref] [PubMed]

C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbach, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90, 107401–107404 (2003).
[Crossref] [PubMed]

N.-C. Panoiu and R. M. Osgood, “Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials,” Phys. Rev. E 68, 016611 (2003).
[Crossref]

Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003)
[Crossref]

2002 (3)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J.B. Pendry, “All-angle negative refrction without negative effective index,” Phys. Rev. B 65, 201104 (2002)
[Crossref]

N. Garcia and M. Nieto-Vesperinas, “Is there an experimental verification of a negative index of refraction yet?,” Opt. Lett. 27, 885–887 (2002).
[Crossref]

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403–207406 (2002).
[Crossref] [PubMed]

2001 (2)

R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

C. Caloz, C.-C. Chang, and T. Itoh, “Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,” J.Appl.Phys. 90, 5483–5486(2001).
[Crossref]

2000 (3)

J.B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000)
[Crossref]

B. Gralak, S. Enoch, and G. Tayeb “Anomalous refractive properties of photonic crystals,” J.Opt.Soc.Am. A 17, 1012 (2000)
[Crossref]

1999 (1)

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theor. Techn. MTT-47, 195–225 (1999).

1993 (1)

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J.Opt.Soc.Am. B,  10, 322 (1993)
[Crossref]

1968 (1)

V.G. Veselago, “The electrodynamics of substances with simultanenous negative values of ε and μ,” Sov. Phys. Usp. 10,509–514 (1968).
[Crossref]

Arjavalingam, G.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J.Opt.Soc.Am. B,  10, 322 (1993)
[Crossref]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou1, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003)
[Crossref] [PubMed]

Brock, J.B.

A.A. Houck, J.B. Brock, and I.L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90, 137401 (2003).
[Crossref] [PubMed]

Brommer, K. D.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J.Opt.Soc.Am. B,  10, 322 (1993)
[Crossref]

Caloz, C.

C. Caloz, C.-C. Chang, and T. Itoh, “Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,” J.Appl.Phys. 90, 5483–5486(2001).
[Crossref]

Chang, C.-C.

C. Caloz, C.-C. Chang, and T. Itoh, “Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,” J.Appl.Phys. 90, 5483–5486(2001).
[Crossref]

Chen, Chii-Chang

Hung-Ta Chien, Hui-Ting Tang, Chao-Hsien Kuo, Chii-Chang Chen, and Zhen Ye, “Directed diffraction without negative refraction,” Phys. Rev. B 70, 113101 (2004)
[Crossref]

Chien, Hung-Ta

Hung-Ta Chien, Hui-Ting Tang, Chao-Hsien Kuo, Chii-Chang Chen, and Zhen Ye, “Directed diffraction without negative refraction,” Phys. Rev. B 70, 113101 (2004)
[Crossref]

Chuang, I.L.

A.A. Houck, J.B. Brock, and I.L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90, 137401 (2003).
[Crossref] [PubMed]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou1, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003)
[Crossref] [PubMed]

Derov, J. S.

P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals,” Phys. Rev. Lett. 92, 127401 (2004)
[Crossref] [PubMed]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, “Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens,” Phys. Rev. Lett. 92, 117403 (2004)
[Crossref] [PubMed]

Enoch, S.

B. Gralak, S. Enoch, and G. Tayeb “Anomalous refractive properties of photonic crystals,” J.Opt.Soc.Am. A 17, 1012 (2000)
[Crossref]

Foteinopolou1, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou1, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003)
[Crossref] [PubMed]

Garcia, N.

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403–207406 (2002).
[Crossref] [PubMed]

N. Garcia and M. Nieto-Vesperinas, “Is there an experimental verification of a negative index of refraction yet?,” Opt. Lett. 27, 885–887 (2002).
[Crossref]

Garcia-Pomar, J. L.

Gralak, B.

B. Gralak, S. Enoch, and G. Tayeb “Anomalous refractive properties of photonic crystals,” J.Opt.Soc.Am. A 17, 1012 (2000)
[Crossref]

Grbic, A.

A. Grbic and G. V. Eleftheriades, “Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens,” Phys. Rev. Lett. 92, 117403 (2004)
[Crossref] [PubMed]

Greegor, R.B.

C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbach, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90, 107401–107404 (2003).
[Crossref] [PubMed]

Holden, A.J.

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theor. Techn. MTT-47, 195–225 (1999).

Houck, A.A.

A.A. Houck, J.B. Brock, and I.L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90, 137401 (2003).
[Crossref] [PubMed]

Itoh, T.

C. Caloz, C.-C. Chang, and T. Itoh, “Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,” J.Appl.Phys. 90, 5483–5486(2001).
[Crossref]

Joannopoulos, J. D.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J.B. Pendry, “All-angle negative refrction without negative effective index,” Phys. Rev. B 65, 201104 (2002)
[Crossref]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J.Opt.Soc.Am. B,  10, 322 (1993)
[Crossref]

Johnson, S. G.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J.B. Pendry, “All-angle negative refrction without negative effective index,” Phys. Rev. B 65, 201104 (2002)
[Crossref]

Kempa, K.

Koltenbach, B.E.C.

C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbach, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90, 107401–107404 (2003).
[Crossref] [PubMed]

Kuo, Chao-Hsien

Hung-Ta Chien, Hui-Ting Tang, Chao-Hsien Kuo, Chii-Chang Chen, and Zhen Ye, “Directed diffraction without negative refraction,” Phys. Rev. B 70, 113101 (2004)
[Crossref]

Li, K.

C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbach, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90, 107401–107404 (2003).
[Crossref] [PubMed]

Li, Z.-Y.

Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003)
[Crossref]

Lin, L.-L.

Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003)
[Crossref]

Lu, W. T.

P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals,” Phys. Rev. Lett. 92, 127401 (2004)
[Crossref] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature 426, 404 (2003)
[Crossref] [PubMed]

Luo, C.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J.B. Pendry, “All-angle negative refrction without negative effective index,” Phys. Rev. B 65, 201104 (2002)
[Crossref]

Meade, R. D.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J.Opt.Soc.Am. B,  10, 322 (1993)
[Crossref]

Merlin, R.

R. Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl. Phys. Lett. 84, 1290 (2004)
[Crossref]

Narimanov, E. E.

Nieto-Vesperinas, M.

Notomi, M.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000)
[Crossref]

Osgood, R. M.

N.-C. Panoiu and R. M. Osgood, “Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials,” Phys. Rev. E 68, 016611 (2003).
[Crossref]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou1, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003)
[Crossref] [PubMed]

Panoiu, N.-C.

N.-C. Panoiu and R. M. Osgood, “Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials,” Phys. Rev. E 68, 016611 (2003).
[Crossref]

Parazzoli, C.G.

C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbach, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90, 107401–107404 (2003).
[Crossref] [PubMed]

Parimi, P. V.

P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals,” Phys. Rev. Lett. 92, 127401 (2004)
[Crossref] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature 426, 404 (2003)
[Crossref] [PubMed]

Pendry, J. B.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003).
[Crossref]

Pendry, J.B.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J.B. Pendry, “All-angle negative refrction without negative effective index,” Phys. Rev. B 65, 201104 (2002)
[Crossref]

J.B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theor. Techn. MTT-47, 195–225 (1999).

Podolskiy, V. A.

Ramakrishna, S. A.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003).
[Crossref]

Rappe, A. M.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J.Opt.Soc.Am. B,  10, 322 (1993)
[Crossref]

Ren, Z.F.

Robbins, D.J.

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theor. Techn. MTT-47, 195–225 (1999).

Robertson, W. M.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J.Opt.Soc.Am. B,  10, 322 (1993)
[Crossref]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003).
[Crossref]

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003).
[Crossref]

R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003).
[Crossref]

Shelby, R.A.

R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003).
[Crossref]

Smith, D.R.

R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Sokoloff, J.

P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals,” Phys. Rev. Lett. 92, 127401 (2004)
[Crossref] [PubMed]

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou1, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003)
[Crossref] [PubMed]

Sridhar, S.

P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals,” Phys. Rev. Lett. 92, 127401 (2004)
[Crossref] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature 426, 404 (2003)
[Crossref] [PubMed]

Stewart, W.J.

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theor. Techn. MTT-47, 195–225 (1999).

Tang, Hui-Ting

Hung-Ta Chien, Hui-Ting Tang, Chao-Hsien Kuo, Chii-Chang Chen, and Zhen Ye, “Directed diffraction without negative refraction,” Phys. Rev. B 70, 113101 (2004)
[Crossref]

Tanielian, M.

C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbach, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90, 107401–107404 (2003).
[Crossref] [PubMed]

Tayeb, G.

B. Gralak, S. Enoch, and G. Tayeb “Anomalous refractive properties of photonic crystals,” J.Opt.Soc.Am. A 17, 1012 (2000)
[Crossref]

Veselago, V.G.

V.G. Veselago, “The electrodynamics of substances with simultanenous negative values of ε and μ,” Sov. Phys. Usp. 10,509–514 (1968).
[Crossref]

Vodo, P.

P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals,” Phys. Rev. Lett. 92, 127401 (2004)
[Crossref] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature 426, 404 (2003)
[Crossref] [PubMed]

Wang, X.

Ye, Zhen

Hung-Ta Chien, Hui-Ting Tang, Chao-Hsien Kuo, Chii-Chang Chen, and Zhen Ye, “Directed diffraction without negative refraction,” Phys. Rev. B 70, 113101 (2004)
[Crossref]

Appl. Phys. Lett. (3)

R. Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl. Phys. Lett. 84, 1290 (2004)
[Crossref]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003).
[Crossref]

X. Wang, Z.F. Ren, and K. Kempa “Improved superlensing in two-dimensional photonic crystals with a basis,” Appl. Phys. Lett. 86, 061105 (2005).
[Crossref]

IEEE Trans. Microw. Theor. Techn. (1)

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theor. Techn. MTT-47, 195–225 (1999).

J.Appl.Phys. (1)

C. Caloz, C.-C. Chang, and T. Itoh, “Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,” J.Appl.Phys. 90, 5483–5486(2001).
[Crossref]

J.Opt.Soc.Am. A (2)

M. Nieto-Vesperinas, “Problem of image superresolution with a negative-refractive-index slab,” J.Opt.Soc.Am. A,  21, 491 (2004)
[Crossref]

B. Gralak, S. Enoch, and G. Tayeb “Anomalous refractive properties of photonic crystals,” J.Opt.Soc.Am. A 17, 1012 (2000)
[Crossref]

J.Opt.Soc.Am. B (1)

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J.Opt.Soc.Am. B,  10, 322 (1993)
[Crossref]

Nature (1)

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: Imaging by flat lens using negative refraction,” Nature 426, 404 (2003)
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (4)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000)
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J.B. Pendry, “All-angle negative refrction without negative effective index,” Phys. Rev. B 65, 201104 (2002)
[Crossref]

Hung-Ta Chien, Hui-Ting Tang, Chao-Hsien Kuo, Chii-Chang Chen, and Zhen Ye, “Directed diffraction without negative refraction,” Phys. Rev. B 70, 113101 (2004)
[Crossref]

Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003)
[Crossref]

Phys. Rev. E (1)

N.-C. Panoiu and R. M. Osgood, “Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials,” Phys. Rev. E 68, 016611 (2003).
[Crossref]

Phys. Rev. Lett. (7)

J.B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403–207406 (2002).
[Crossref] [PubMed]

A.A. Houck, J.B. Brock, and I.L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90, 137401 (2003).
[Crossref] [PubMed]

C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbach, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90, 107401–107404 (2003).
[Crossref] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative Refraction and Left-Handed Electromagnetism in Microwave Photonic Crystals,” Phys. Rev. Lett. 92, 127401 (2004)
[Crossref] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou1, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91, 207401 (2003)
[Crossref] [PubMed]

A. Grbic and G. V. Eleftheriades, “Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens,” Phys. Rev. Lett. 92, 117403 (2004)
[Crossref] [PubMed]

Science (1)

R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V.G. Veselago, “The electrodynamics of substances with simultanenous negative values of ε and μ,” Sov. Phys. Usp. 10,509–514 (1968).
[Crossref]

Supplementary Material (1)

» Media 1: MPG (2596 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Band diagram for the photonic crystal structure for TM polarization (Ez parallel to the cylinders) The illumination frequency is marked by the red line. (b) Isofrequency curves of air (bellow) and PC(above) at this frequency.vg is the group velocity.

Fig. 2.
Fig. 2.

(a) Maps of the modulus |Ez | of the electric field E for two point sources separated a distance s from each other. (White spots in the space of simulation are out of the color scale). (b) Intensity of the point sources (bottom) and the intensity of the “image” (top), at distance 0.7mm from the tangent plane to the top cylinders, for different values of s. The peak abscissas coincide with those of illuminated cylinders

Fig. 5.
Fig. 5.

Maps of the modulus |Ez | of the electric field E for (a) a Gaussian beam entering in a prism in the interface parallel to XM, (b) and (c) a Gaussian beam entering in a prism in the interface parallel to ΓM and reflection in the tilted interfaces. (d) Isofrequency lines in air and in the PC, and illustration at the entrance (left) and at the reflection interface (right). Conservation of the parallel component of k at the entrance interface gives a broad range of k-vectors in the PC giving rise to group velocity vectors normal to the flat portion of the isofrequency line and thus propagating in the ΓM direction. On the other hand, conservation of the parallel component of k at the reflection interface gives rise to almost all k-vectors in air being evanescent (i.e. outside the k = ω/c circle).

Fig. 3.
Fig. 3.

(a) Same as Fig. 2(a) but with the upper row removed. (b) Normalized intensity of the image in the case of Fig. 2(a), i.e. 16 rows (dashed red line) and of Fig 3(a), namely, 17 rows (solid black line), and with 18 rows (dash-dot blue line) at the plane shown in (a) at distance 0.7mm from the tangent plane to the cylinders. In the three cases the peak abscissas fit with the position of the illuminated cylinders in the exit interface, and it is independent of the position of the two point sources.

Fig. 6.
Fig. 6.

(a) Map of the electric field Ez for a prism with a tilt angle ϕ = 63.43 o . (b) Conservation of the parallel components in the Bragg law for the tilted interface for refraction, where Γ2 is the origin of the second Brillouin zone. Notice that the pink broken line is normal to the tilted interface direction. The point at which this line crosses the air isofrequency circle marks the orientation of the refraction k-vector. (c) Conservation of the parallel components of the Bragg law for the tilted interface in the reflection process. (d) conservation of the component of k parallel to the right side interface in the refraction process.

Fig. 4.
Fig. 4.

Normalized intensity in a plane away 0.7 mm from the exit row of the response of the PC to a Gaussian beam of FWHM = 2 27 m m (solid black line) and a Gaussian beam with FWHM = 30mm (dashed red line).

Fig. 7.
Fig. 7.

(a)(Movie of the electric field with FDTD 560KB) Map of the modulus |Ez | of E for the tip structure with the upper cylinder tapered to sharper shape. (b) Intensity along the yellow line of Fig.11(a) showing the exponential decay typical of an evanescent wave. (c) Variation of the intensity at 0.7mm from the cylinder of the apex as a function of the number of rows of the tip, showing a resonator behavior. (d) Intensity along a line parallel to x-direction at 0.7mm from the apex with a circular top cylinder, i.e. not tapered to a sharper shape,(shaded curves) and with a sharpener cylinder vertex (solid lines) for two Gaussian beams with FWHM 12.65mm (red curves) and 30mm (black curves), respectively.

Fig. 8.
Fig. 8.

(a) Maps of the modulus |Ez | of the electric field E for a two apex structure in front of a point source and (b) linear response of the exit apex in the top to different intensities of the point source.

Fig. 9.
Fig. 9.

(a)Maps of the modulus |Ez | of the electric field E of a two-apex crystal.(b)Intensity of the wavefront emerging from an extended object, (solid line), compared with the output signal, (open circles), close to the upper apex when the lower apex and an aperture close to it raster scan the object wavefront. Both signals are normalized to unity. The peak of the output is the same as that of the object.

Metrics