Abstract

The backscattering of circularly polarized light at normal incidence to a half-space of scattering particles is studied using the Electric Field Monte Carlo (EMC) method. The spatial distribution of the backscat-tered light intensity is examined for both the time-resolved and continuous wave cases for large particles with anisotropy factor, g, in the range 0.8 to 0.97. For the time-resolved case, the backscattered light with the same helicity as that of the incident beam (co-polarized) is found to form a ring centered on the point of incidence. The ring expands and simultaneously grows weak as time increases. The intensity of backscattered light with helicity opposite to that of the incident beam (cross-polarized) is found to exhibit a ring behavior for g ≥ 0.85, with significant backscattering at the point of incidence. For the continuous-wave case no such ring pattern is observed in backscattered light for either helicity. The present EMC study suggests that the ring behavior can only be observed in the time domain, in contrast to previous studies of light backscattered from forward scattering media based on the scalar time-independent Fokker-Planck approximation to the radiative transfer equation. The time-dependent ring structure of backscattered light may have potential use in subsurface imaging applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. D. Gilbert and J. C. Pernicka, �??Improvement of underwater visibility by reduction of backscatter with a circular polarization technique,�?? Appl. Opt. 6, 741-746 (1967).
    [CrossRef] [PubMed]
  2. G. D. Lewis, D. L. Jordan and P. J. Roberts, �??Backscattering target detection in a turbid medium by polarization discrimination,�?? Appl. Opt. 38, 3937-3944 (1999).
    [CrossRef]
  3. S. P. Morgan and M. E. Ridgway, �??Polarization properties of light backscattered from a two layer scattering medium,�?? Opt. Express 7, 395-402 (2000).
    [CrossRef] [PubMed]
  4. X. Ni and R. R. Alfano, �??Time-resolved backscattering of circularly and linearly polarized light in a turbid medium,�?? Opt. Lett. 29, 2773-2775 (2004).
    [CrossRef] [PubMed]
  5. M. Xu and R. R. Alfano, �??Circular polarization memory of light,�?? Phys. Rev. E (submitted for publication)
  6. F. C. MacKintosh, J. X. Zhu, D. J. Pine and D. A.Weitz, �??Polarization memory of multiply scattered light,�?? Phys. Rev. B 40, R9342-R9345 (1989).
    [CrossRef]
  7. A. D. Kim and M. Moscoso, �??Backscattering of beams by forward-peaked scattering media,�?? Opt. Lett. 29, 74-76 (2004).
    [CrossRef] [PubMed]
  8. Min Xu, �??Electric field Monte Carlo simulation of polarized light propagation in turbid media,�?? Opt. Express 12, 6530-6539 (2004).
    [CrossRef] [PubMed]
  9. A. Ishimaru, Wave propagation and scattering in random media, I and II (Academic, New York, 1978).
  10. S. Chandrasekhar, Radiative transfer (Oxford University Press, Oxford, UK, 1960).
  11. K. F. Evans and G. L. Stephens, �??A new polarized atmospheric radiative transfer model,�?? J. Quant. Spectrosc. Radiat. Transfer 46, 413-423 (1991).
    [CrossRef]
  12. A. D. Kim and M. Moscoso, �??Chebyshev spectral methods for radiative transfer,�?? SIAM J. Sci. Comput. 23, 2074-2094 (2002).
    [CrossRef]
  13. G. W. Kattawar and G. N. Plass, �??Radiance and polarization of multiply scattered light from haze clouds,�?? Appl. Opt. 7, 1519-1527 (1968).
    [CrossRef] [PubMed]
  14. I. Lux and L. Koblinger, Monte Carlo particle transport methods: neutron and photon calculations (CRC Press, Boca Raton, Fla., 1991).
  15. J. M. Schmitt, A. H. Gandjbakhche and R. F. Bonner, �??Use of polarized light to discriminate short-path photons in a multiply scattering medium,�?? Appl. Opt. 31, 6535-6546 (1992).
    [CrossRef] [PubMed]
  16. P. Bruscaglioni, G. Zaccanit and Q. Wei, �??Transmission of a pulsed polarized light beam through thick turbid media: numerical results,�?? Appl. Opt. 32, 6142-6150 (1993).
    [CrossRef] [PubMed]
  17. M. J. Rakovic, G. W. Kattawar, M. Mehrbeolu, B. D. Cameron, L. V. Wang, S. Rastegar and G.L. Cote, �??Light backscattering polarization patterns from turbid media: theory and experiment,�?? Appl. Opt. 38, 3399-3408 (1999).
    [CrossRef]
  18. S. Bartel and A. H. Hielscher,�??Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,�?? Appl. Opt. 39, 1580-1588 (2000).
    [CrossRef]
  19. M. Moscoso, J. B. Keller and G. Papanicolaou, �??Depolarization and blurring of optical images by biological tissue,�?? J. Opt. Soc. Am. A 18, 948-960 (2001).
    [CrossRef]
  20. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach and L. I. Chaikovskaya, �??Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations ,�?? Appl. Opt. 40, 400-412 (2001).
    [CrossRef]
  21. R. Y. Rubinstein, Simulation and the Monte Carlo method (John Wiley and Sons, 1981)
    [CrossRef]

Appl. Opt.

G. D. Gilbert and J. C. Pernicka, �??Improvement of underwater visibility by reduction of backscatter with a circular polarization technique,�?? Appl. Opt. 6, 741-746 (1967).
[CrossRef] [PubMed]

G. D. Lewis, D. L. Jordan and P. J. Roberts, �??Backscattering target detection in a turbid medium by polarization discrimination,�?? Appl. Opt. 38, 3937-3944 (1999).
[CrossRef]

G. W. Kattawar and G. N. Plass, �??Radiance and polarization of multiply scattered light from haze clouds,�?? Appl. Opt. 7, 1519-1527 (1968).
[CrossRef] [PubMed]

J. M. Schmitt, A. H. Gandjbakhche and R. F. Bonner, �??Use of polarized light to discriminate short-path photons in a multiply scattering medium,�?? Appl. Opt. 31, 6535-6546 (1992).
[CrossRef] [PubMed]

P. Bruscaglioni, G. Zaccanit and Q. Wei, �??Transmission of a pulsed polarized light beam through thick turbid media: numerical results,�?? Appl. Opt. 32, 6142-6150 (1993).
[CrossRef] [PubMed]

M. J. Rakovic, G. W. Kattawar, M. Mehrbeolu, B. D. Cameron, L. V. Wang, S. Rastegar and G.L. Cote, �??Light backscattering polarization patterns from turbid media: theory and experiment,�?? Appl. Opt. 38, 3399-3408 (1999).
[CrossRef]

S. Bartel and A. H. Hielscher,�??Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,�?? Appl. Opt. 39, 1580-1588 (2000).
[CrossRef]

H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach and L. I. Chaikovskaya, �??Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations ,�?? Appl. Opt. 40, 400-412 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Phys. Rev. B

F. C. MacKintosh, J. X. Zhu, D. J. Pine and D. A.Weitz, �??Polarization memory of multiply scattered light,�?? Phys. Rev. B 40, R9342-R9345 (1989).
[CrossRef]

Phys. Rev. E

M. Xu and R. R. Alfano, �??Circular polarization memory of light,�?? Phys. Rev. E (submitted for publication)

SIAM J. Sci. Comput.

A. D. Kim and M. Moscoso, �??Chebyshev spectral methods for radiative transfer,�?? SIAM J. Sci. Comput. 23, 2074-2094 (2002).
[CrossRef]

Spectrosc. Radiat. Transfer

K. F. Evans and G. L. Stephens, �??A new polarized atmospheric radiative transfer model,�?? J. Quant. Spectrosc. Radiat. Transfer 46, 413-423 (1991).
[CrossRef]

Other

I. Lux and L. Koblinger, Monte Carlo particle transport methods: neutron and photon calculations (CRC Press, Boca Raton, Fla., 1991).

A. Ishimaru, Wave propagation and scattering in random media, I and II (Academic, New York, 1978).

S. Chandrasekhar, Radiative transfer (Oxford University Press, Oxford, UK, 1960).

R. Y. Rubinstein, Simulation and the Monte Carlo method (John Wiley and Sons, 1981)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Backscattered time-resolved intensity of co-polarized light for g = 0.96 at times: (a.) t = 1 [ l s c ] , (b.) t = 2 [ l s c ] , (c.) t = 3 [ l s c ] and (d.) t = 4 [ l s c ] .

Fig. 2.
Fig. 2.

Comparison of backscattered intensity of light co-polarized with the incident beam for different anisotropy factors at t = 2 [ l s c ] .

Fig. 3.
Fig. 3.

Time evolution of co-polarized backscattered light for g = 0.80. Note at t = 19 [ l s c ] plateauing of the ring-peak occurs. Inset: the radial profile at t = 30 [ l s c ] , convergence to a Gaussian-like distribution.

Fig. 4.
Fig. 4.

Schematic diagram illustrating light pathways contributing to ring formation with backscattered light (a.) co-polarized , and (b.) cross-polarized, with the incident beam.

Fig. 5.
Fig. 5.

Time dependence of the radius of the ring-peak of co-polarized backscattered light for various values of g.

Fig. 6.
Fig. 6.

Time-resolved intensity of cross-polarized backscattered light for g = 0.96 at times (a.) t = 1 [ l s c ] , (b.) t = 2 [ l s c ] , (c.) t = 3 [ l s c ] and (d.) t = 4 [ l s c ] .

Fig. 7.
Fig. 7.

Time evolution of cross-polarized backscattered light for g = 0.85. Note at t = 11 [ l s c ] plateauing of the ring-peak occurs. Inset: the radial profile at t = 25 [ l s c ] , convergence to a Gaussian-like distribution.

Fig. 8.
Fig. 8.

Comparison of cross-polarized backscattered light for various anisotropies, t = 4 [ l s c ]

Fig. 9.
Fig. 9.

Comparison of backscattered light with opposite and preserved polarization at t = 6.5 [ l s c ] and with g = 0.90.

Fig. 10.
Fig. 10.

Backscattered continuous-wave intensity for (a) co-polarized and (b) cross-polarized light with the incident beam.

Fig. 11.
Fig. 11.

Comparison of backscattered continuous-wave intensity for various anisotropies with the same (a) and opposite (b) helicity as the incident beam.

Fig. 12.
Fig. 12.

Comparison of continuous-wave and time-resolved co-polarized backscattered light for g = 0.85.

Fig. 13.
Fig. 13.

Comparison of continuous-wave and time-resolved cross-polarized backscattered light for g = 0.85.

Fig. 14.
Fig. 14.

Time evolution of simultaneous collection of co-polarized and cross-polarized backscattered light for g = 0.85.

Tables (1)

Tables Icon

Table 1. The size parameters and the relative indices of refraction for scattering spheres of the specified anisotropy factors investigated.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

( c o 1 t + s ̂ r + σ t ) I r s ̂ t = Ω P ( s ̂ s ̂ ) I ( r , s ̂ , t ) d s
s = m sin ( θ ) cos ( ϕ ) + n sin ( θ ) sin ( ϕ ) + s cos ( θ )
e 1 = m cos ( ϕ ) + n sin ( ϕ )
e 2 = m sin ( ϕ ) + n cos ( ϕ )
e 1 = m cos ( θ ) cos ( ϕ ) + n cos ( θ ) sin ( ϕ ) s sin ( θ ) = m
e 2 = e 2 = n
E = E 1 m + E 2 n = ( S 2 E e 1 ) m + ( S 1 E e 2 ) n
( m n s ) = ( cos ( θ ) cos ( ϕ ) cos ( θ ) sin ( ϕ ) sin ( θ ) sin ( ϕ ) cos ( ϕ ) 0 sin ( θ ) cos ( ϕ ) sin ( θ ) sin ( ϕ ) cos ( θ ) ) ( m n s )
( E 1 E 2 ) = 1 F θ ϕ ( S 2 cos ( ϕ ) S 2 sin ( ϕ ) S 1 sin ( ϕ ) S 1 cos ( ϕ ) ) ( E 1 E 2 )

Metrics