Abstract

We report the experimental demonstration of tunable ultraslow light using a 1.55 um vertical-cavity surface-emitting laser (VCSEL) at room temperature. By varying the bias current around lasing threshold, we achieve tunable delay of an intensity modulated signal input. Delays up to 100 ps are measured for a broadband signal with modulation frequency of 2.8 GHz. With a VCSEL design optimized for amplification and leveraging the scalability of VCSEL arrays, delays of multiple modulation periods are feasible.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C.J. Chang-Hasnain, P.C. Ku, J. Kim, S.L. Chuang, �??Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,�?? in Proceedings of the IEEE Conference on Special Issue on Nanoelectronics and Nanoscale Processing (2003), pp. 1884-1897.
  2. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E, Slusher, �??Optical Delay Lines Based on Optical Filters,�?? IEEE J. Quantum Electron. 37, NO. 4, pp.525-532 (2001).
    [CrossRef]
  3. J. Scheuer, George T. Paloczi, J. K. S. Poon, and A. Yariv, �??Coupled Resonator Optical Waveguides: Toward the Slowing and Storage of Light,�?? OPN 16, No.2, 36 (2005).
  4. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, R. W. Boyd, �??Distributed and Localized Feedback in Microresonator Squences for Linear and Nonlinear Optics,�?? J. Opt. Soc. Am. B, 21, 1818 (2004)
    [CrossRef]
  5. J. P. Heritage, A. M. Weiner, and R. N. Thurston, �??Picosecond Pulse Shaping by Spectral Phase and Amplitude Manipulation,�?? Opt. Lett. 10, 609 (1985).
    [CrossRef] [PubMed]
  6. M.S. Bigelow, N.N Lepeshkin, R.W. Boyd, �??Observation of Ultraslow Light Propagation in a Ruby Crystal at Room-Temperature,�?? Phys. Rev. Lett. 90, 113-903 (2003).
    [CrossRef] [PubMed]
  7. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, �??Light speed reduction to 17 m/s in an ultracold atomic gas,�?? Nature 397, 594-598 (1999).
    [CrossRef]
  8. H. Altug, J. Vuckovic, �??Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,�?? Appl. Phys. Lett. 86, 111-102 (2005).
    [CrossRef]
  9. Ph. Palinginis, S. Crankshaw, F. Sedgwick, M. Moewe, E. Kim, C.J. Chang-Hasnain, H. Wang, S.L. Chuang, submitted to Appl. Phys. Lett.
  10. M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute and M.-C. Amann, �??Hight-speed Modulation Up to 10Gbit/s with 1.55 µm Wavelength InGaAlAs VCSELs,�?? Electron. Lett. 38, 1180, (2002).
    [CrossRef]
  11. M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann and M.-C. Amann, �??Singlemode 1.55 µm VCSELs with low threshold and high output power,�?? Electron. Lett. 39, (2003).
    [CrossRef]
  12. C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, and T.P. Lee, �??Multiple Wavelength Tunable Surface Emitting Laser Arrays,�?? IEEE J. Quant. Electron. 27, No. 6, pp.1368-1376 (1991).
    [CrossRef]
  13. C.J. Chang-Hasnain, �??Tunable VCSEL,�?? IEEE J. selected topics Quant. Electron. 6, No. 6, 978-987 (2000).
    [CrossRef]
  14. C. Tomblimg, T. Saitoh, T. Mukai, �??Performance predictions for vertical cavity semiconductor laser amplifiers,�?? IEEE J. Quantum Electron. 30, 2491 (1994).
    [CrossRef]
  15. C. Chang, L. Chrostowski and C.J. Chang-Hasnain, �??Injection locking of VCSELs,�?? IEEE J. selected topics Quantum Electron. 9, 1386-1393 (2003).
    [CrossRef]
  16. R. Lang, �??Injection locking properties of a semiconductor laser,�?? IEEE J. Quantum Electron., vol. QE-18, 976-983, 1982.
    [CrossRef]
  17. R.S. Tucker, et. al. manuscript in preparation
  18. S. Minin, M. R. Fisher, S.L. Chuang, �??Current-controlled group delay using a semiconductor Fabry-Perot amplifier,�?? Appl. Phys. Lett. 84, 3238-3240 (2004).
    [CrossRef]

Appl. Phys. Lett.

H. Altug, J. Vuckovic, �??Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,�?? Appl. Phys. Lett. 86, 111-102 (2005).
[CrossRef]

Ph. Palinginis, S. Crankshaw, F. Sedgwick, M. Moewe, E. Kim, C.J. Chang-Hasnain, H. Wang, S.L. Chuang, submitted to Appl. Phys. Lett.

S. Minin, M. R. Fisher, S.L. Chuang, �??Current-controlled group delay using a semiconductor Fabry-Perot amplifier,�?? Appl. Phys. Lett. 84, 3238-3240 (2004).
[CrossRef]

Electron. Lett.

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute and M.-C. Amann, �??Hight-speed Modulation Up to 10Gbit/s with 1.55 µm Wavelength InGaAlAs VCSELs,�?? Electron. Lett. 38, 1180, (2002).
[CrossRef]

M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann and M.-C. Amann, �??Singlemode 1.55 µm VCSELs with low threshold and high output power,�?? Electron. Lett. 39, (2003).
[CrossRef]

IEEE J. Quant. Electron.

C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, and T.P. Lee, �??Multiple Wavelength Tunable Surface Emitting Laser Arrays,�?? IEEE J. Quant. Electron. 27, No. 6, pp.1368-1376 (1991).
[CrossRef]

IEEE J. Quantum Electron

R. Lang, �??Injection locking properties of a semiconductor laser,�?? IEEE J. Quantum Electron., vol. QE-18, 976-983, 1982.
[CrossRef]

IEEE J. Quantum Electron.

C. Tomblimg, T. Saitoh, T. Mukai, �??Performance predictions for vertical cavity semiconductor laser amplifiers,�?? IEEE J. Quantum Electron. 30, 2491 (1994).
[CrossRef]

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E, Slusher, �??Optical Delay Lines Based on Optical Filters,�?? IEEE J. Quantum Electron. 37, NO. 4, pp.525-532 (2001).
[CrossRef]

IEEE J. selected topics Quant. Electron.

C.J. Chang-Hasnain, �??Tunable VCSEL,�?? IEEE J. selected topics Quant. Electron. 6, No. 6, 978-987 (2000).
[CrossRef]

IEEE J. selected topics Quantum Electron

C. Chang, L. Chrostowski and C.J. Chang-Hasnain, �??Injection locking of VCSELs,�?? IEEE J. selected topics Quantum Electron. 9, 1386-1393 (2003).
[CrossRef]

J. Opt. Soc. Am. B,

J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, R. W. Boyd, �??Distributed and Localized Feedback in Microresonator Squences for Linear and Nonlinear Optics,�?? J. Opt. Soc. Am. B, 21, 1818 (2004)
[CrossRef]

Nature

L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, �??Light speed reduction to 17 m/s in an ultracold atomic gas,�?? Nature 397, 594-598 (1999).
[CrossRef]

OPN

J. Scheuer, George T. Paloczi, J. K. S. Poon, and A. Yariv, �??Coupled Resonator Optical Waveguides: Toward the Slowing and Storage of Light,�?? OPN 16, No.2, 36 (2005).

Opt. Lett.

Phys. Rev. Lett.

M.S. Bigelow, N.N Lepeshkin, R.W. Boyd, �??Observation of Ultraslow Light Propagation in a Ruby Crystal at Room-Temperature,�?? Phys. Rev. Lett. 90, 113-903 (2003).
[CrossRef] [PubMed]

Other

C.J. Chang-Hasnain, P.C. Ku, J. Kim, S.L. Chuang, �??Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,�?? in Proceedings of the IEEE Conference on Special Issue on Nanoelectronics and Nanoscale Processing (2003), pp. 1884-1897.

R.S. Tucker, et. al. manuscript in preparation

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experiment setup. A tunable laser (SDL 8610) provides the probe signal and is modulated using a Mach-Zehnder interferometer. The optical attenuator is used to adjust the signal power. PM OC and fibers are used to couple the light into the VCSEL cavity. Time domain measurements are carried out using a fast photo-receiver and oscilloscope. An EDFA is used to amplify the reflected signal. The optical spectra and power levels are monitored by OSA and power meter respectively. (M-Z: Mach-Zehnder interferometer, PM: polarization maintaining, EDFA: Erbium-doped fiber amplifier, OSA: optical spectrum analyzer.)

Fig. 2.
Fig. 2.

Optical spectra taken by sweeping the tunable laser frequency at various VCSEL biases. Spectra are taken when the VCSEL is biased around threshold (1.15mA) and the asymmetric profile indicating it is lasing, while symmetric profile indicating it is in the amplifier regime.

Fig. 3.
Fig. 3.

Measurements of delay for a RF-modulated optical signal (f = 2.8 GHz) at various VCSEL bias conditions around threshold. The probe laser power is fixed at zero detuning, P = 100 nW. The reference waveform in red is taken when the VCSEL is off. Delays increase with increasing VCSEL bias current.

Fig. 4.
Fig. 4.

Measured delay waveforms at modulation frequencies 1, 2, and 3 GHz with VCSEL biased at 0.9Ith, and fixed signal power 200 nW. The dotted lines are measured data, while the solid lines are fitted data.

Metrics