Abstract

We report the experimental demonstration of tunable ultraslow light using a 1.55 um vertical-cavity surface-emitting laser (VCSEL) at room temperature. By varying the bias current around lasing threshold, we achieve tunable delay of an intensity modulated signal input. Delays up to 100 ps are measured for a broadband signal with modulation frequency of 2.8 GHz. With a VCSEL design optimized for amplification and leveraging the scalability of VCSEL arrays, delays of multiple modulation periods are feasible.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Spectral signatures of the dynamics of current-modulated vertical-cavity surface-emitting lasers subject to optical feedback

Yanhua Hong, Sujit Bandyopadhyay, and K. Alan Shore
J. Opt. Soc. Am. B 22(11) 2350-2356 (2005)

Slow-light in a vertical-cavity semiconductor optical amplifier

Nicolas Laurand, Stephane Calvez, Martin D. Dawson, and Anthony E. Kelly
Opt. Express 14(15) 6858-6863 (2006)

Greatly enhanced modulation response of injection-locked multimode VCSELs

Devang Parekh, Xiaoxue Zhao, Werner Hofmann, Markus C. Amann, Luis A. Zenteno, and Connie J. Chang-Hasnain
Opt. Express 16(26) 21582-21586 (2008)

References

  • View by:
  • |
  • |
  • |

  1. C.J. Chang-Hasnain, P.C. Ku, J. Kim, and S.L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” in Proceedings of the IEEE Conference on Special Issue on Nanoelectronics and Nanoscale Processing (2003), pp. 1884–1897.
  2. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E, Slusher, “Optical Delay Lines Based on Optical Filters,” IEEE J. Quantum Electron. 37, NO. 4, pp.525–532 (2001).
    [Crossref]
  3. J. Scheuer, George T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing and Storage of Light,” OPN  16, No.2, 36 (2005).
  4. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and Localized Feedback in Microresonator Squences for Linear and Nonlinear Optics,” J. Opt. Soc. Am. B,  21, 1818 (2004)
    [Crossref]
  5. J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond Pulse Shaping by Spectral Phase and Amplitude Manipulation,” Opt. Lett. 10, 609 (1985).
    [Crossref] [PubMed]
  6. M.S. Bigelow, N.N Lepeshkin, and R.W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room-Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [Crossref] [PubMed]
  7. L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [Crossref]
  8. H. Altug and J. Vuckovic, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
    [Crossref]
  9. Ph. Palinginis, S. Crankshaw, F. Sedgwick, M. Moewe, E. Kim, C.J. Chang-Hasnain, H. Wang, and S.L. Chuang, submitted to Appl. Phys. Lett.
  10. M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
    [Crossref]
  11. M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” Electron. Lett. 39, (2003).
    [Crossref]
  12. C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, and T.P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quant. Electron. 27, No. 6, pp.1368–1376 (1991).
    [Crossref]
  13. C.J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. selected topics Quant. Electron. 6, No. 6, 978–987 (2000).
    [Crossref]
  14. C. Tomblimg, T. Saitoh, and T. Mukai, “Performance predictions for vertical cavity semiconductor laser amplifiers,” IEEE J. Quantum Electron. 30, 2491 (1994).
    [Crossref]
  15. C. Chang, L. Chrostowski, and C.J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. selected topics Quantum Electron. 9, 1386–1393 (2003).
    [Crossref]
  16. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. QE– 18, 976–983, 1982.
    [Crossref]
  17. R.S. Tucker, et. al. manuscript in preparation
  18. S. Minin, M. R. Fisher, and S.L. Chuang, “Current-controlled group delay using a semiconductor Fabry-Perot amplifier,” Appl. Phys. Lett. 84, 3238–3240 (2004).
    [Crossref]

2005 (2)

J. Scheuer, George T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing and Storage of Light,” OPN  16, No.2, 36 (2005).

H. Altug and J. Vuckovic, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[Crossref]

2004 (2)

J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and Localized Feedback in Microresonator Squences for Linear and Nonlinear Optics,” J. Opt. Soc. Am. B,  21, 1818 (2004)
[Crossref]

S. Minin, M. R. Fisher, and S.L. Chuang, “Current-controlled group delay using a semiconductor Fabry-Perot amplifier,” Appl. Phys. Lett. 84, 3238–3240 (2004).
[Crossref]

2003 (4)

C. Chang, L. Chrostowski, and C.J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. selected topics Quantum Electron. 9, 1386–1393 (2003).
[Crossref]

M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” Electron. Lett. 39, (2003).
[Crossref]

C.J. Chang-Hasnain, P.C. Ku, J. Kim, and S.L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” in Proceedings of the IEEE Conference on Special Issue on Nanoelectronics and Nanoscale Processing (2003), pp. 1884–1897.

M.S. Bigelow, N.N Lepeshkin, and R.W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room-Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

2002 (1)

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
[Crossref]

2001 (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E, Slusher, “Optical Delay Lines Based on Optical Filters,” IEEE J. Quantum Electron. 37, NO. 4, pp.525–532 (2001).
[Crossref]

2000 (1)

C.J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. selected topics Quant. Electron. 6, No. 6, 978–987 (2000).
[Crossref]

1999 (1)

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

1994 (1)

C. Tomblimg, T. Saitoh, and T. Mukai, “Performance predictions for vertical cavity semiconductor laser amplifiers,” IEEE J. Quantum Electron. 30, 2491 (1994).
[Crossref]

1991 (1)

C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, and T.P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quant. Electron. 27, No. 6, pp.1368–1376 (1991).
[Crossref]

1985 (1)

1982 (1)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. QE– 18, 976–983, 1982.
[Crossref]

Altug, H.

H. Altug and J. Vuckovic, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[Crossref]

Amann, M.-C.

M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” Electron. Lett. 39, (2003).
[Crossref]

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
[Crossref]

Behroozi, C.H.

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Bigelow, M.S.

M.S. Bigelow, N.N Lepeshkin, and R.W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room-Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Böhm, G.

M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” Electron. Lett. 39, (2003).
[Crossref]

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
[Crossref]

Boyd, R. W.

Boyd, R.W.

M.S. Bigelow, N.N Lepeshkin, and R.W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room-Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Chak, P.

Chang, C.

C. Chang, L. Chrostowski, and C.J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. selected topics Quantum Electron. 9, 1386–1393 (2003).
[Crossref]

Chang-Hasnain, C.J.

C. Chang, L. Chrostowski, and C.J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. selected topics Quantum Electron. 9, 1386–1393 (2003).
[Crossref]

C.J. Chang-Hasnain, P.C. Ku, J. Kim, and S.L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” in Proceedings of the IEEE Conference on Special Issue on Nanoelectronics and Nanoscale Processing (2003), pp. 1884–1897.

C.J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. selected topics Quant. Electron. 6, No. 6, 978–987 (2000).
[Crossref]

C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, and T.P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quant. Electron. 27, No. 6, pp.1368–1376 (1991).
[Crossref]

Ph. Palinginis, S. Crankshaw, F. Sedgwick, M. Moewe, E. Kim, C.J. Chang-Hasnain, H. Wang, and S.L. Chuang, submitted to Appl. Phys. Lett.

Chrostowski, L.

C. Chang, L. Chrostowski, and C.J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. selected topics Quantum Electron. 9, 1386–1393 (2003).
[Crossref]

Chuang, S.L.

S. Minin, M. R. Fisher, and S.L. Chuang, “Current-controlled group delay using a semiconductor Fabry-Perot amplifier,” Appl. Phys. Lett. 84, 3238–3240 (2004).
[Crossref]

C.J. Chang-Hasnain, P.C. Ku, J. Kim, and S.L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” in Proceedings of the IEEE Conference on Special Issue on Nanoelectronics and Nanoscale Processing (2003), pp. 1884–1897.

Ph. Palinginis, S. Crankshaw, F. Sedgwick, M. Moewe, E. Kim, C.J. Chang-Hasnain, H. Wang, and S.L. Chuang, submitted to Appl. Phys. Lett.

Crankshaw, S.

Ph. Palinginis, S. Crankshaw, F. Sedgwick, M. Moewe, E. Kim, C.J. Chang-Hasnain, H. Wang, and S.L. Chuang, submitted to Appl. Phys. Lett.

Dutton, Z.

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E, Slusher, “Optical Delay Lines Based on Optical Filters,” IEEE J. Quantum Electron. 37, NO. 4, pp.525–532 (2001).
[Crossref]

Fisher, M. R.

S. Minin, M. R. Fisher, and S.L. Chuang, “Current-controlled group delay using a semiconductor Fabry-Perot amplifier,” Appl. Phys. Lett. 84, 3238–3240 (2004).
[Crossref]

Florez, L.T.

C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, and T.P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quant. Electron. 27, No. 6, pp.1368–1376 (1991).
[Crossref]

Fürfanger, M.

M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” Electron. Lett. 39, (2003).
[Crossref]

Harbison, J.P.

C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, and T.P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quant. Electron. 27, No. 6, pp.1368–1376 (1991).
[Crossref]

Harris, S.E.

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Hau, L.V.

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Heebner, J. E.

Heritage, J. P.

Hofmann, W.

M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” Electron. Lett. 39, (2003).
[Crossref]

Kim, E.

Ph. Palinginis, S. Crankshaw, F. Sedgwick, M. Moewe, E. Kim, C.J. Chang-Hasnain, H. Wang, and S.L. Chuang, submitted to Appl. Phys. Lett.

Kim, J.

C.J. Chang-Hasnain, P.C. Ku, J. Kim, and S.L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” in Proceedings of the IEEE Conference on Special Issue on Nanoelectronics and Nanoscale Processing (2003), pp. 1884–1897.

Köhler, F.

M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” Electron. Lett. 39, (2003).
[Crossref]

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
[Crossref]

Ku, P.C.

C.J. Chang-Hasnain, P.C. Ku, J. Kim, and S.L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” in Proceedings of the IEEE Conference on Special Issue on Nanoelectronics and Nanoscale Processing (2003), pp. 1884–1897.

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. QE– 18, 976–983, 1982.
[Crossref]

Lauer, C.

M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” Electron. Lett. 39, (2003).
[Crossref]

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
[Crossref]

Lee, T.P.

C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, and T.P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quant. Electron. 27, No. 6, pp.1368–1376 (1991).
[Crossref]

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E, Slusher, “Optical Delay Lines Based on Optical Filters,” IEEE J. Quantum Electron. 37, NO. 4, pp.525–532 (2001).
[Crossref]

Lepeshkin, N.N

M.S. Bigelow, N.N Lepeshkin, and R.W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room-Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E, Slusher, “Optical Delay Lines Based on Optical Filters,” IEEE J. Quantum Electron. 37, NO. 4, pp.525–532 (2001).
[Crossref]

Maeda, M.W.

C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, and T.P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quant. Electron. 27, No. 6, pp.1368–1376 (1991).
[Crossref]

Maute, M.

M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” Electron. Lett. 39, (2003).
[Crossref]

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
[Crossref]

Mederer, F.

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
[Crossref]

Michalzik, R.

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
[Crossref]

Minin, S.

S. Minin, M. R. Fisher, and S.L. Chuang, “Current-controlled group delay using a semiconductor Fabry-Perot amplifier,” Appl. Phys. Lett. 84, 3238–3240 (2004).
[Crossref]

Moewe, M.

Ph. Palinginis, S. Crankshaw, F. Sedgwick, M. Moewe, E. Kim, C.J. Chang-Hasnain, H. Wang, and S.L. Chuang, submitted to Appl. Phys. Lett.

Mukai, T.

C. Tomblimg, T. Saitoh, and T. Mukai, “Performance predictions for vertical cavity semiconductor laser amplifiers,” IEEE J. Quantum Electron. 30, 2491 (1994).
[Crossref]

Ortsiefer, M.

M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” Electron. Lett. 39, (2003).
[Crossref]

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
[Crossref]

Palinginis, Ph.

Ph. Palinginis, S. Crankshaw, F. Sedgwick, M. Moewe, E. Kim, C.J. Chang-Hasnain, H. Wang, and S.L. Chuang, submitted to Appl. Phys. Lett.

Paloczi, George T.

J. Scheuer, George T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing and Storage of Light,” OPN  16, No.2, 36 (2005).

Pereira, S.

Poon, J. K. S.

J. Scheuer, George T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing and Storage of Light,” OPN  16, No.2, 36 (2005).

Rosskopf, J.

M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” Electron. Lett. 39, (2003).
[Crossref]

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
[Crossref]

Saitoh, T.

C. Tomblimg, T. Saitoh, and T. Mukai, “Performance predictions for vertical cavity semiconductor laser amplifiers,” IEEE J. Quantum Electron. 30, 2491 (1994).
[Crossref]

Scheuer, J.

J. Scheuer, George T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing and Storage of Light,” OPN  16, No.2, 36 (2005).

Sedgwick, F.

Ph. Palinginis, S. Crankshaw, F. Sedgwick, M. Moewe, E. Kim, C.J. Chang-Hasnain, H. Wang, and S.L. Chuang, submitted to Appl. Phys. Lett.

Shau, R.

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
[Crossref]

Sipe, J. E.

Slusher, R. E,

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E, Slusher, “Optical Delay Lines Based on Optical Filters,” IEEE J. Quantum Electron. 37, NO. 4, pp.525–532 (2001).
[Crossref]

Stoffel, N.G.

C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, and T.P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quant. Electron. 27, No. 6, pp.1368–1376 (1991).
[Crossref]

Thurston, R. N.

Tomblimg, C.

C. Tomblimg, T. Saitoh, and T. Mukai, “Performance predictions for vertical cavity semiconductor laser amplifiers,” IEEE J. Quantum Electron. 30, 2491 (1994).
[Crossref]

Tucker, R.S.

R.S. Tucker, et. al. manuscript in preparation

Vuckovic, J.

H. Altug and J. Vuckovic, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[Crossref]

Wang, H.

Ph. Palinginis, S. Crankshaw, F. Sedgwick, M. Moewe, E. Kim, C.J. Chang-Hasnain, H. Wang, and S.L. Chuang, submitted to Appl. Phys. Lett.

Weiner, A. M.

Yariv, A.

J. Scheuer, George T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing and Storage of Light,” OPN  16, No.2, 36 (2005).

Zah, C.E.

C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, and T.P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quant. Electron. 27, No. 6, pp.1368–1376 (1991).
[Crossref]

Appl. Phys. Lett. (2)

H. Altug and J. Vuckovic, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[Crossref]

S. Minin, M. R. Fisher, and S.L. Chuang, “Current-controlled group delay using a semiconductor Fabry-Perot amplifier,” Appl. Phys. Lett. 84, 3238–3240 (2004).
[Crossref]

Electron. Lett. (2)

M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, and M.-C. Amann, “Hight-speed Modulation Up to 10Gbit/s with 1.55 μm Wavelength InGaAlAs VCSELs,” Electron. Lett. 38, 1180, (2002).
[Crossref]

M. Ortsiefer, M. Fürfanger, J. Rosskopf, G. Böhm, F. Köhler, C. Lauer, M. Maute, W. Hofmann, and M.-C. Amann, “Singlemode 1.55 μm VCSELs with low threshold and high output power,” Electron. Lett. 39, (2003).
[Crossref]

IEEE J. Quant. Electron. (1)

C.J. Chang-Hasnain, J.P. Harbison, C.E. Zah, M.W. Maeda, L.T. Florez, N.G. Stoffel, and T.P. Lee, “Multiple Wavelength Tunable Surface Emitting Laser Arrays,” IEEE J. Quant. Electron. 27, No. 6, pp.1368–1376 (1991).
[Crossref]

IEEE J. Quantum Electron. (3)

C. Tomblimg, T. Saitoh, and T. Mukai, “Performance predictions for vertical cavity semiconductor laser amplifiers,” IEEE J. Quantum Electron. 30, 2491 (1994).
[Crossref]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. QE– 18, 976–983, 1982.
[Crossref]

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E, Slusher, “Optical Delay Lines Based on Optical Filters,” IEEE J. Quantum Electron. 37, NO. 4, pp.525–532 (2001).
[Crossref]

IEEE J. selected topics Quant. Electron. (1)

C.J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. selected topics Quant. Electron. 6, No. 6, 978–987 (2000).
[Crossref]

IEEE J. selected topics Quantum Electron. (1)

C. Chang, L. Chrostowski, and C.J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. selected topics Quantum Electron. 9, 1386–1393 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M.S. Bigelow, N.N Lepeshkin, and R.W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room-Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Other (4)

J. Scheuer, George T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled Resonator Optical Waveguides: Toward the Slowing and Storage of Light,” OPN  16, No.2, 36 (2005).

C.J. Chang-Hasnain, P.C. Ku, J. Kim, and S.L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” in Proceedings of the IEEE Conference on Special Issue on Nanoelectronics and Nanoscale Processing (2003), pp. 1884–1897.

Ph. Palinginis, S. Crankshaw, F. Sedgwick, M. Moewe, E. Kim, C.J. Chang-Hasnain, H. Wang, and S.L. Chuang, submitted to Appl. Phys. Lett.

R.S. Tucker, et. al. manuscript in preparation

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experiment setup. A tunable laser (SDL 8610) provides the probe signal and is modulated using a Mach-Zehnder interferometer. The optical attenuator is used to adjust the signal power. PM OC and fibers are used to couple the light into the VCSEL cavity. Time domain measurements are carried out using a fast photo-receiver and oscilloscope. An EDFA is used to amplify the reflected signal. The optical spectra and power levels are monitored by OSA and power meter respectively. (M-Z: Mach-Zehnder interferometer, PM: polarization maintaining, EDFA: Erbium-doped fiber amplifier, OSA: optical spectrum analyzer.)

Fig. 2.
Fig. 2.

Optical spectra taken by sweeping the tunable laser frequency at various VCSEL biases. Spectra are taken when the VCSEL is biased around threshold (1.15mA) and the asymmetric profile indicating it is lasing, while symmetric profile indicating it is in the amplifier regime.

Fig. 3.
Fig. 3.

Measurements of delay for a RF-modulated optical signal (f = 2.8 GHz) at various VCSEL bias conditions around threshold. The probe laser power is fixed at zero detuning, P = 100 nW. The reference waveform in red is taken when the VCSEL is off. Delays increase with increasing VCSEL bias current.

Fig. 4.
Fig. 4.

Measured delay waveforms at modulation frequencies 1, 2, and 3 GHz with VCSEL biased at 0.9Ith, and fixed signal power 200 nW. The dotted lines are measured data, while the solid lines are fitted data.

Metrics