Abstract

Modeling and simulation results on new, resonant, waveguided 2 × 2 switches and 1 × 1 modulators are presented here. The devices employ two coupled microrings: one fixed and one floating. The fixed ring is coupled to bus waveguides that are crossed or are locally parallel. Electrooptic and thermooptic switching at λ = 1.55 μm are investigated. A novel peaks-and-valley spectral response allows low-power switching with low crosstalk and low insertion loss. Complete switching is attained when the complex index of both rings is perturbed by Δn ~ 4 × 10-4. The modulator’s optical output power is a linear function of Δn over three to five decades of Δn.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi and J. �??P. Laine, �??Microring resonator channel dropping filters,�?? J. Lightwave Technol. 15, 998-1005, (1997).
    [CrossRef]
  2. S. J. Emelett and R. A. Soref, �??Electro-optical and optical-optical switching of dual microring resonator waveguide systems,�?? in Advanced Optical and Quantum Memories and Computing II, H.J. Coufal, Z. U. Hasan, A. E. Craig, chrs./eds., Proc. SPIE 5735, pp.14-24 (2005).
    [CrossRef]
  3. S. J. Emelett and R. A. Soref, �??Design and simulation of silicon microring optical routing switches,�?? J. Lightwave Technol. 23, 1800-1807, (2005).
    [CrossRef]
  4. B. E. Little, H. A. Haus, J. Foresi, L. C. Kimerling, E. P. Ippen and D. J. Ripin, �??,�?? IEEE Photonics Technol. Lett. 10, 816-818, (1998).
    [CrossRef]
  5. R. A. Soref and B. E. Little, �??Proposed N-wavelength M-fiber WDM crossconnect switch using active microring resonators,�?? IEEE Photon Technol. Lett. 10, 1121-1123, (1998).
    [CrossRef]
  6. Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, �??Micrometre-scale silicon electro-optical modulator,�?? Nature 435, 325-327, (2005).
    [CrossRef] [PubMed]
  7. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, �??All-optical control of light on a silicon chip,�?? Nature 431, 1081-1084, (2004).
    [CrossRef] [PubMed]
  8. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. �??T. Ho and C. H. Lee, �??Lightwave switching in semiconductor microring devices by free carrier injection,�?? J. Lightwave Technol. 21, 2997-3003, (2003).
    [CrossRef]
  9. S. J. Emelett and R. A. Soref, �??Synthesis of dual-microring-resonator cross-connect filters,�?? Opt. Express, 13, (2005), 4439-4456 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4439">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4439</a>
    [CrossRef] [PubMed]
  10. D. K. Sparacin, C. Hong, L. C. Kimerling, J. Michel, J. P. Lock and K. K. Gleason, �??Trimming of microring resonators using photo-oxidation of plasma-polymerized organosilane cladding material,�?? Appl. Opt. (to be published).
  11. A. Yariv, Quantum Electronics (John Wiley & Sons, 1989), Chap. 7.
  12. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, 1984), Chap. 7.

Appl. Opt. (to be published)

D. K. Sparacin, C. Hong, L. C. Kimerling, J. Michel, J. P. Lock and K. K. Gleason, �??Trimming of microring resonators using photo-oxidation of plasma-polymerized organosilane cladding material,�?? Appl. Opt. (to be published).

IEEE Photon Technol. Lett.

R. A. Soref and B. E. Little, �??Proposed N-wavelength M-fiber WDM crossconnect switch using active microring resonators,�?? IEEE Photon Technol. Lett. 10, 1121-1123, (1998).
[CrossRef]

IEEE Photonics Technol. Lett.

B. E. Little, H. A. Haus, J. Foresi, L. C. Kimerling, E. P. Ippen and D. J. Ripin, �??,�?? IEEE Photonics Technol. Lett. 10, 816-818, (1998).
[CrossRef]

J. Lightwave Technol.

Nature

Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, �??Micrometre-scale silicon electro-optical modulator,�?? Nature 435, 325-327, (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, �??All-optical control of light on a silicon chip,�?? Nature 431, 1081-1084, (2004).
[CrossRef] [PubMed]

Opt. Express

Other

A. Yariv, Quantum Electronics (John Wiley & Sons, 1989), Chap. 7.

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, 1984), Chap. 7.

S. J. Emelett and R. A. Soref, �??Electro-optical and optical-optical switching of dual microring resonator waveguide systems,�?? in Advanced Optical and Quantum Memories and Computing II, H.J. Coufal, Z. U. Hasan, A. E. Craig, chrs./eds., Proc. SPIE 5735, pp.14-24 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Top view of our proposed 2 × 2 waveguided, floating-ring cross-connect switch-and-modulator. In this planar version, the bus waveguides intersect, whereas in a 3D version, they would cross. It is assumed that the complex index of both rings can be changed simultaneously.

Fig. 2.
Fig. 2.

Alternative arrangement for cross-grid system. This orientation generates the same response as the cross-grid and also adheres to the synthesis. Special attention must be given to insure that only R1 interacts with R2 , and not either of the bus guides.

Fig. 3.
Fig. 3.

The triangular response. The normalized output drop and through port optical power response of the dual microring cross-connect system displays the needed bilateral and local symmetries. These characteristics are generated by following the synthesis and the constraints of Eq. (21).

Fig. 4.
Fig. 4.

The spike, or elongated triangular, response. The normalized outputs drop and through port optical power response of the dual microring cross-connect system displays the needed bilateral symmetry and a breaking of the local symmetry . These characteristics are generated by following the synthesis and the constraints of Eq. (22).

Fig. 5
Fig. 5

Fig. 6, and Fig. 7. Description and comparison of the maximally flat, left, triangular and spike responses. Superimposed on each plot are a series of index bias positions, A – Resonant, and B − Mid-range, which will serve as a starting locations, or index biases, for the rings’ index perturbation.

Fig 8.
Fig 8.

Index perturbation characteristics of the triangular response device at three different initial bias points. Utilizing the prescribed nomenclature, the six depicted diagrams present the drop and through ports as a function of index perturbation. The center column break refers to a zero disruption and the alteration increases in both directions.

Fig 9.
Fig 9.

Index perturbation characteristics of the spike response device at three different initial bias points. Utilizing the prescribed nomenclature, the six depicted diagrams present the drop and through ports as a function of index perturbation. The center column break refers to a zero disruption and the alteration increases in both directions.

Tables (4)

Tables Icon

Table 1(a). Displacement parameters of the triangular response system

Tables Icon

Table 1(b). Design parameters and constants of the triangular response system at λ0 =1.55 μm Am =6.0 and Δλ = 0.16 nm.

Tables Icon

Table 2(a). Displacement parameters of the spike response system

Tables Icon

Table 2(b). Design parameters and constants of the triangular response system at λ0 =1.55 μm Am =6.0 and Δλ = 0.16 nm.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

E T E I 2 = A α τ a + A Φ Γ a Γ b τ aa A ( τ a + κ a 2 τ aa + τ a 2 τ aa ) τ b A α A ( 1 + τ a τ aa ) τ b + A Φ τ a τ aa Γ b 2
E D E I 2 = A′ κ a κ aa ( A Φ Γ b A α τ b 2 ) A α A ( 1 + τ a τ aa ) τ b + A Φ τ a τ aa Γ b 2
A = exp ( α r L 2 + j ω T r )
A′ = exp ( α r L 4 + j ω T r 2 )
A α = exp ( α r L )
A α = exp ( α r L 2 )
A Φ = exp ( jωT r )
A Φ = exp ( 2 jωT r )
Γ a , b = ( κ a , b 2 + τ a , b 2 )
g 1 D = 2 a 1 D ε
g 2 F = 1 4 a 2 S a 1 D c 1 S g 1 D ε 3 2
g 3 F =
g 2 D = 2 a 2 D ε
a q D = sin π 2 ( 2 q 1 ) N
a q S = sin π 2 ( 2 q 1 ) N
C q S = cos 2 ( π q 2 N ) .
K 1 D = πB 2 g 1 D FS R 1
K 2 F = πB 2 g 2 F g 1 D FS R 2 FS R 1 ,
κ q = 2 K q K q 2 + 1
M q λ m = 2 π R 1,2 n .
κ 1 ( M 1 )
κ 2 ( 1 4 M 2 )
κ 1 ( 2 M 1 )
κ 2 ( 1 4 M 2 ) .
N Rings = n + δn + Δ n + i κ ¯ + κ ¯ + i Δ κ ¯
r Δ = Δ κ ¯ Δ n
r δ = δ κ ¯ δn
N Rings = n + δn + Δ n + i κ ¯ + i r δ δn + i r Δ Δ n
n δ = M q 2 πR ( λ δ λ 0 ) + n
Q = ω 0 T α d L λ B Δ λ B

Metrics