Abstract

Spontaneous four-wave mixing in a dispersion-shifted fiber (DSF) is a promising approach for generating quantum-correlated photon pairs in the 1.5 μm band. However, it has been reported that noise photons generated by the spontaneous Raman scattering process degrade the quantum correlation of the generated photons. This paper describes the characteristics of quantum-correlated photon pair generation in a DSF cooled by liquid nitrogen. With this technique, the number of noise photons was sufficiently suppressed and the ratio of true coincidence to accidental coincidence was increased to ~30.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. K. Ekert, �??Quantum cryptography based on Bell�??s theorem,�?? Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  2. C. H. Bennett, G. Brassard, N. D. Mermin, �??Quantum cryptography without Bell�??s theorem,�?? Phys. Rev. Lett. 68, 557-559 (1992).
    [CrossRef] [PubMed]
  3. H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, �??Quantum repeaters: the role of imperfect local operations in quantum communication,�?? Phys. Rev. Lett. 81, 5932-5935 (1998).
    [CrossRef]
  4. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communications,�?? IEEE Photonics Technol. Lett. 14, 983-985 (2002).
    [CrossRef]
  5. K. Inoue and K. Shimizu, �??Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering,�?? Jpn. J. Appl. Phys. 43, 8048-8052 (2004).
    [CrossRef]
  6. J. E. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, �??Quantum-correlated twin photons from microstructure fiber,�?? Opt. Express 12, 3086-3094 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086</a>.
    [CrossRef] [PubMed]
  7. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communications: improved generation of correlated photons,�?? Opt. Express 12, 3737-3744 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737</a>.
    [CrossRef] [PubMed]
  8. J. G. Rarity, J. Fulconis, J. Duligali, W. J. Wadsworth, and P. St. J. Russell, �??Photonic crystal fiber source of correlated photon pairs,�?? Opt. Express 13, 534-544 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 13-2-534">http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 13-2-534</a>.
    [CrossRef] [PubMed]
  9. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, �??Measurement of co- and crosspolarized Raman spectra in silica fiber for small detunings,�?? Opt. Express 13, 2236-2244 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-2236">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-2236</a>.
    [CrossRef] [PubMed]
  10. J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. Russell, and J. G. Rarity, �??High brightness single mode source of correlated photons pairs using a photonic crystal fiber,�?? arXiv: quant-ph/0507111.
  11. H. Takesue and K. Inoue, �??Generation of polarization entangled photon pairs and violation of Bell�??s inequatilty using spontaneous four-wave mixing in fiber loop,�?? Phys. Rev. A 70, 031802(R) (2004).
    [CrossRef]
  12. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, �??Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,�?? Phys. Rev. Lett. 94 053601 (2005).
    [CrossRef] [PubMed]
  13. H. Takesue and K. Inoue, �??Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,�?? arXiv: quant-ph/0508215.
  14. X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, �??Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,�?? Opt. Lett. 30, 1201-1203 (2005).
    [CrossRef] [PubMed]
  15. Y. Yamamoto and K. Inoue, �??Noise in amplifiers,�?? IEEE J. Lightwave Technol. 21, 2895-2915 (2003).
    [CrossRef]
  16. J. I. Dadap, R. L. Espinola, R. M. Osgood, Jr, S. J. McNab, and Y. A. Vlasov, �??Spontaneous Raman scattering in ultrasmall silicon waveguides,�?? Opt. Lett. 29, 2755-2757 (2004).
    [CrossRef] [PubMed]

arXiv: quant-ph/0507111 (1)

J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. Russell, and J. G. Rarity, �??High brightness single mode source of correlated photons pairs using a photonic crystal fiber,�?? arXiv: quant-ph/0507111.

arXiv: quant-ph/0508215 (1)

H. Takesue and K. Inoue, �??Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,�?? arXiv: quant-ph/0508215.

IEEE J. Lightwave Technol. (1)

Y. Yamamoto and K. Inoue, �??Noise in amplifiers,�?? IEEE J. Lightwave Technol. 21, 2895-2915 (2003).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communications,�?? IEEE Photonics Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Inoue and K. Shimizu, �??Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering,�?? Jpn. J. Appl. Phys. 43, 8048-8052 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

H. Takesue and K. Inoue, �??Generation of polarization entangled photon pairs and violation of Bell�??s inequatilty using spontaneous four-wave mixing in fiber loop,�?? Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

Phys. Rev. Lett. (4)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, �??Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band,�?? Phys. Rev. Lett. 94 053601 (2005).
[CrossRef] [PubMed]

A. K. Ekert, �??Quantum cryptography based on Bell�??s theorem,�?? Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, N. D. Mermin, �??Quantum cryptography without Bell�??s theorem,�?? Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, �??Quantum repeaters: the role of imperfect local operations in quantum communication,�?? Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. PC: polarization controller, D: photon counter.

Fig. 2.
Fig. 2.

C value as a function of number of idler photons per pulse. Squares: cooled, x symbols: uncooled. The dotted line shows C when there are no noise photons.

Fig. 3.
Fig. 3.

Number of quantum correlated photon pairs per pulse as a function of pump peak power. Squares: cooled, x symbols: uncooled.

Fig. 4.
Fig. 4.

Number of noise photons per pulse as a function of pump peak power for (a) Stokes photons (idler channel) and (b) anti-Stokes photons (signal channel). Squares: cooled, x symbols: uncooled.

Tables (1)

Tables Icon

Table I. Loss after DSF and characteristics of photon counters.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

2 ω p = ω s + ω i
2 k p = k s + k i .
d n s dz = α n s + g e αz 1 P 1 P 0 ,
d n as dz = α n as + g e αz P 0 P 1 1 ,
P 1 P 0 = exp ( k B T ) ,
n s ( T ) = gL e αL 1 exp ( k B T ) ,
n as ( T ) = gL e αL exp ( k B T ) 1 ,
c s = ( μ c + μ sn ) + α s + d s ,
c i = ( μ c + μ in ) + α i + d i ,
p c = μ c α s c s .
R m = c s ( p c α i + c i ) .
R um = c s c i .
C = R m R um = μ c α s α i c s c i + 1 .
ε 1 2 C .

Metrics