Abstract

We describe a generic method to optimize the optical spectral throughput of a pair of acousto-optic modulators (AOM) which can be used for introducing a frequency shift in ultrahigh-resolution heterodyne optical coherence tomography. Systematic and quantitative analysis of a pair of AOMs indicates that a configuration with a spectral bandwidth of more than 200 nm at a center wavelength of 825 nm (tunable) can be achieved. Using a pair of AOMs in conjunction with a broadband low coherence light source, real-time imaging of biological tissues with an axial resolution ~3 μm (in air) has been experimentally demonstrated with a high-speed OCT system.

©2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  2. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
    [Crossref] [PubMed]
  3. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
    [Crossref]
  4. A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, “High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging,” Opt. Lett. 28, 2064–2046 (2003).
    [Crossref] [PubMed]
  5. X. M. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. D. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29, 1763–1765 (2004).
    [Crossref] [PubMed]
  6. J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11, 3473–3484 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3473.
    [Crossref] [PubMed]
  7. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
    [Crossref]
  8. H. Matsumoto and A. Hirai, “A white-light interferometer using a lamp source and heterodyne detection with acousto-optic modulators,” Opt. Commun. 170, 217–220 (1999).
    [Crossref]
  9. C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11, 2753–2761 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753.
    [Crossref] [PubMed]
  10. T. Q. Xie, Z. G. Wang, and Y. T. Pan, “High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation,” Opt. Express 11, 3210–3219 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3210
    [Crossref] [PubMed]
  11. K. Wiesauer, M. Pircher, E. Gotzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grutzner, C. K. Hitzenberger, and D. Stifter, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express 13, 1015–1024 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-1015.
    [Crossref] [PubMed]
  12. Y. C. Chen and X. D. Li, “Dispersion management up to the third order for real-time optical coherence tomography involving a phase or frequency modulator,” Opt. Express 12, 5968–5978 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5968.
    [Crossref] [PubMed]
  13. A. Korpel, Acousto-optics, 2nd ed. New York: Marcel Dekker, 1997.
  14. E. D. J. Smith, A. V. Zvyagin, and D. D. Sampson, “Real-time dispersion compensation in scanning interferometry,” Opt. Lett. 27, 1998–2000 (2002).
    [Crossref]
  15. M. J. Cobb, X. M. Liu, and X. D. Li, “Continuous focus tracking for real-time optical coherence tomography,” Opt. Lett. 30, 1680–1682 (2005).
    [Crossref] [PubMed]
  16. K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35–49 (2003).
    [Crossref]

2005 (2)

2004 (3)

2003 (5)

2002 (1)

2000 (1)

1999 (1)

H. Matsumoto and A. Hirai, “A white-light interferometer using a lamp source and heterodyne detection with acousto-optic modulators,” Opt. Commun. 170, 217–220 (1999).
[Crossref]

1998 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Aguirre, A. D.

Ahrens, G.

Arnold, K. S.

K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35–49 (2003).
[Crossref]

Bauer, S.

Boer, J. F. de

Bouma, B. E.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chen, T. C.

Chen, Y.

Chen, Y. C.

Chen, Z. P.

Cobb, M. J.

Dobre, G. M.

Engelke, R.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, “High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging,” Opt. Lett. 28, 2064–2046 (2003).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Gotzinger, E.

Graf, R. N.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Grutzner, G.

Hartl, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hirai, A.

H. Matsumoto and A. Hirai, “A white-light interferometer using a lamp source and heterodyne detection with acousto-optic modulators,” Opt. Commun. 170, 217–220 (1999).
[Crossref]

Hitzenberger, C. K.

Hsiung, P.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Jackson, D. A.

Kimmey, M. B.

Ko, T. H.

Korpel, A.

A. Korpel, Acousto-optics, 2nd ed. New York: Marcel Dekker, 1997.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Liu, X. M.

Lo, P. W.

Matsumoto, H.

H. Matsumoto and A. Hirai, “A white-light interferometer using a lamp source and heterodyne detection with acousto-optic modulators,” Opt. Commun. 170, 217–220 (1999).
[Crossref]

Nassif, N.

Nelson, J. S.

Pan, Y. T.

Park, B. H.

Pircher, M.

Podoleanu, A. G.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Pyhtila, J. W.

Sampson, D. D.

Saxer, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

She, C. Y.

K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35–49 (2003).
[Crossref]

Smith, E. D. J.

Stifter, D.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G. J.

Trost, P.

Wang, Z. G.

Wax, A.

Wiesauer, K.

Xiang, S. H.

Xie, T. Q.

Yun, S. H.

Zhao, Y. H.

Zhou, Q. Y.

Zvyagin, A. V.

Contemp. Phys. (1)

K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35–49 (2003).
[Crossref]

Opt. Commun. (1)

H. Matsumoto and A. Hirai, “A white-light interferometer using a lamp source and heterodyne detection with acousto-optic modulators,” Opt. Commun. 170, 217–220 (1999).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Other (1)

A. Korpel, Acousto-optics, 2nd ed. New York: Marcel Dekker, 1997.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of two AOMs for introducing a sufficient and stable Doppler frequency shift. L is the thickness of the AOM crystal; ϕ 0 and ϕ0 are the incident angles, ϕ 1 and ϕ-1 the diffraction angles of +1st order and -1st order, and K 1 and K 2 are the propagation constants of the acoustic wave in the two AOMs, respectively. γ is the angle between K 1 and K 2 .

Fig. 2.
Fig. 2.

(a) Single-pass diffraction efficiency through one AOM with an incident angle of ϕ 0 = ϕB (825 nm) (blue dashed line) and ϕ 0 = ϕB (882 nm) (red solid line), respectively. (b) Double-pass diffraction efficiency through two AOMs with an incident angle of ϕ 0 = ϕB (825 nm) (blue dashed line) and ϕ 0 = ϕB (882 nm) (red solid line), respectively. (c) Measured input spectrum (black dotted line) to the first AOM and the output spectra after double-passing the two AOMs with the incident angle equal to the Bragg angles at 825 nm (blue dashed line) and 882 nm (red solid line) , respectively. The curve indicated by cross signs (x) on panel (c) represents the predicted double-pass spectral throughput, which is given by the measured input spectrum (as shown by the black dotted line in (c)) modulated by the calculated double-pass throughput efficiency (as shown by the solid red curve in (b)).

Fig. 3.
Fig. 3.

Schematic of a fiber-optic, lateral-priority OCT imaging system, in which two AOMs and a lens-grating phase delay line are implemented in the reference arm. An extra length of single-mode fiber (indicated by “Extra SMF”) in the sample arm is introduced in conjunction with the phase delay line in the reference arm to fully compensate the dispersion in the OCT system up to the third order. Fast lateral beam scan is performed by a PZT-driven miniature probe and slow depth scan is achieved by scanning the end mirror in the phase delay line.

Fig. 4.
Fig. 4.

Interference fringes at the surface of water (a) and a mirror 0.75-mm below the water surface (b). OCT axial resolution is given by then FWHM of the interference fringe envelopes.

Fig. 5.
Fig. 5.

Ultrahigh-resolution OCT images of (a) rabbit cornea and (b) rabbit bladder. Both images were acquired at 2 frames/s with a size of 572×364 pixels (0.9mm×0.55mm, transverse × depth). EP: Epithelium; BM: Bowman’s membrane; SP: Substantia Propria; EN: Endothelium (single cell layer); TE: Transitional Epithelium; SM: Submucosa; ML: Muscular Layers. Both images were taken with an incident power of ~9 mW on the sample.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ 1 ( λ ) = K 1 / k ( λ ) ϕ 0 ,
ϕ′ 1 ( λ ) = K 2 / k ( λ ) ϕ′ 0 ( λ ) ,
η ( λ ) = ν 2 ( λ ) 2 sin 2 ν 2 ( λ ) + ( K Δϕ ( λ ) L ) 2 ν 2 ( λ ) + ( K Δϕ ( λ ) L ) 2 .
ϕ 1 ( λ ) = ( K 2 K 1 ) / k ( λ ) + ϕ 0 γ / n ( λ ) ,
Δ ϕ ( λ ) = Δ ϕ ( λ ) + ( K 1 K 2 ) / 2 k ( λ ) + γ / n ( λ ) .

Metrics