Abstract

We describe a technique for polarization sensitive optical frequency domain reflectometry (OFDR) that achieves 22 micrometer two-point spatial resolution over 35 meters of optical length with -97 dB sensitivity in a single measurement taking only seconds. We demonstrate OFDR’s versatility in both time- and frequency-domain metrology by analyzing a fiber Bragg grating (FBG) in both the spectral and impulse response domains. We also demonstrate how a polarization diversity receiver can be used in an OFDR system to track changes in the polarization state of light propagating through a birefringent component.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. Sorin and D. Baney, �??Measurement of rayleigh backscatter at 1.55 µm with 32 µm spatial resolution,�?? IEEE Photon. Technol. Lett. 4, 374-376 (1992).
    [CrossRef]
  2. J. P. Von derWeid, R. Passy, G. Mussi, and N. Gisin, �??On the characterization of optical fiber network components with optical frequency domain reflectometry,�?? J. Lightwave Tech. 15, 1131�??1141 (1997).
    [CrossRef]
  3. P. Oberson, B. Huttner, O. Guinnard, G. Ribordy, and N. Gisin, �??Optical frequency domain reflectometry with a narrow linewidth fiber laser,�?? IEEE Photon. Technol. Lett. 12, 867-869 (2000).
    [CrossRef]
  4. W. Eickhoff and R. Ulrich, �??Optical frequency domain reflectometry in single-mode fiber,�?? Appl. Phys. Lett. 39 693�??695 (1981).
    [CrossRef]
  5. U. Glombitza and E. Brinkmeyer, �??Coherent frequency domain reflectomtry for charactization of single-mode integrated optical waveguides,�?? J. Lightwave Technol. 11, 1377�??1384 (1993).
    [CrossRef]
  6. M. Froggatt, T. Erdogan, J. Moore, and S. Shenk, �??Optical frequency domain characterization (OFDC) of dispersion in optical fiber Bragg gratings,�?? in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, Washington, DC, 1999), paper FF2.
    [PubMed]
  7. S. Kieckbusch, Ch. Knothe, and E. Brinkmeyer, �??Fast and accurate characterization of fiber Bragg gratings with high spatial resolution and spectral resolution,�?? in Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, Washington, DC, 2003), paper WL2.
  8. G. D. VanWiggeren, A. R. Motamedi, B. Szafraniec, R. S. Tucker, and D. M. Baney, �??Singe-scan polarizationresolved heterodyne optical network analyzer,�?? in Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, Washington, DC, 2002), paper WK2.
  9. M. Froggatt, �??Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber,�?? Appl. Opt. 35 5162�??5164 (1996).
    [CrossRef] [PubMed]
  10. M. Froggatt and J. Moore, �??High resolution strain measurement in optical fiber with Rayleigh scatter,�?? Appl. Opt. 37, 1735�??1740 (1998).
    [CrossRef]
  11. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, �??High-speed optical frequency-domain imaging,�?? Opt. Express 11, 2953�??2963 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953.
    [CrossRef] [PubMed]
  12. M. Wegmuller, M. Legre, and N. Gisin, �??Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry,�?? J. Lightwave Technol. 20 828�??835 (2002).
    [CrossRef]
  13. A. J. Rogers, �??Polarization optical time-domain reflectometry,�?? Electron. Lett. 16 489�??490 (1980).
    [CrossRef]
  14. M. E. Froggatt, B. J. Soller, D. G. Gifford and M. S. Wolfe, �??Correlation and keying of rayleigh scatter for loss and temperature sensing in parallel optical netwroks,�?? in Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, Washington, DC, 2004), paper PDP17.
  15. J. Qian and W. Huang, �??Coupled-mode theory for LP modes,�?? J. Lightwave Technol. 4 619�??625 (1986).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, �??Optical frequency domain reflectometry in single-mode fiber,�?? Appl. Phys. Lett. 39 693�??695 (1981).
[CrossRef]

Electron. Lett. (1)

A. J. Rogers, �??Polarization optical time-domain reflectometry,�?? Electron. Lett. 16 489�??490 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Oberson, B. Huttner, O. Guinnard, G. Ribordy, and N. Gisin, �??Optical frequency domain reflectometry with a narrow linewidth fiber laser,�?? IEEE Photon. Technol. Lett. 12, 867-869 (2000).
[CrossRef]

W. Sorin and D. Baney, �??Measurement of rayleigh backscatter at 1.55 µm with 32 µm spatial resolution,�?? IEEE Photon. Technol. Lett. 4, 374-376 (1992).
[CrossRef]

J. Lightwave Tech. (1)

J. P. Von derWeid, R. Passy, G. Mussi, and N. Gisin, �??On the characterization of optical fiber network components with optical frequency domain reflectometry,�?? J. Lightwave Tech. 15, 1131�??1141 (1997).
[CrossRef]

J. Lightwave Technol. (3)

U. Glombitza and E. Brinkmeyer, �??Coherent frequency domain reflectomtry for charactization of single-mode integrated optical waveguides,�?? J. Lightwave Technol. 11, 1377�??1384 (1993).
[CrossRef]

M. Wegmuller, M. Legre, and N. Gisin, �??Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry,�?? J. Lightwave Technol. 20 828�??835 (2002).
[CrossRef]

J. Qian and W. Huang, �??Coupled-mode theory for LP modes,�?? J. Lightwave Technol. 4 619�??625 (1986).
[CrossRef]

Opt. Express (1)

Other (4)

M. Froggatt, T. Erdogan, J. Moore, and S. Shenk, �??Optical frequency domain characterization (OFDC) of dispersion in optical fiber Bragg gratings,�?? in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, Washington, DC, 1999), paper FF2.
[PubMed]

S. Kieckbusch, Ch. Knothe, and E. Brinkmeyer, �??Fast and accurate characterization of fiber Bragg gratings with high spatial resolution and spectral resolution,�?? in Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, Washington, DC, 2003), paper WL2.

G. D. VanWiggeren, A. R. Motamedi, B. Szafraniec, R. S. Tucker, and D. M. Baney, �??Singe-scan polarizationresolved heterodyne optical network analyzer,�?? in Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, Washington, DC, 2002), paper WK2.

M. E. Froggatt, B. J. Soller, D. G. Gifford and M. S. Wolfe, �??Correlation and keying of rayleigh scatter for loss and temperature sensing in parallel optical netwroks,�?? in Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, Washington, DC, 2004), paper PDP17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Measurement network for polarization diverse OFDR. TLS = tunable laser source, ADC = analog to digital converter, PC = polarization controller, PBS = polarization beam splitter, and τtr = the differential time delay of the two paths in the trigger interferometer. Jones vectors are used to label the electric field at different locations in the network and the device under test is characterized by the complex spectral reflectivity, r̿(ω)

Fig. 2.
Fig. 2.

Reflectivity (return loss) and group delay of a fiber Bragg grating.

Fig. 3.
Fig. 3.

(a) The reflectivity as a function of length of a 35 m optical assembly consisting of two fiber connectors and a fiber Bragg grating,(b) a reflectivity trace with no device connected, and (c) a blow up of the grating and fiber termination. These data were taken using a 40 nm wavelength scan centered at 1550 nm which corresponds to a resolution along the length axis of 20 µm. The time-synchronous electrical artifact in (b) is confirmed by taking data with no optical input.

Fig. 4.
Fig. 4.

The reflectivity on a linear scale of slightly mismatched, polished fiber (PC) terminations showing a 100 µm separation between the two fiber ends and 22 µm full width half maximum resolution of the individual peaks.

Fig. 5.
Fig. 5.

The total reflectivity (black), and the reflectivity components recorded on the s and p detectors (blue and red) of a strong fiber Bragg grating. Beating in the s and p components represents birefringence in the grating and a rotation of the polarization state of the back-reflected light.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E bs = E lo + r ̿ ( ω ) E m exp [ j ω ( t ) Δ τ ] ,
i s ( ω ) = 2 Re { E lo T ̿ s T ̿ s r ̿ ( ω ) E m exp [ j ω ( t ) Δ τ ] } ,
i p ( ω ) = 2 Re { E lo T ̿ p T ̿ p r ̿ ( ω ) E m exp [ j ω ( t ) Δ τ ] } ,
r ( ω ) = i s ( ω ) 2 + i p ( ω ) 2 ,
τ g ( ω ) = { i s ( ω ) i s * ( ω + Δ ω ) + i p ( ω ) i p * ( ω + Δ ω ) } Δ ω ,
i ˜ ( τ k ) = n = 0 N 1 i ( ω n ) exp [ j 2 π kn N ] ,
L max = c τ g 4 n g ,
Δ z c 2 n g Δ f ,

Metrics