Abstract

We demonstrate a robust, compact and automated quantum key distribution system, based upon a one-way Mach-Zender interferometer, which is actively compensated for temporal drifts in the photon phase and polarization. The system gives a superior performance to passive compensation schemes with an average quantum bit error rate of 0.87% and a duty cycle of 99.6% for a continuous quantum key distribution session of 19 hours over a 20.3km installed telecom fibre. The results suggest that actively compensated QKD systems are suitable for practical applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. H. Bennett and G. Brassard, �??Quantum Cryptography: Public key distribution and coin tossing,�?? in Proc. of the IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175-179.
  2. P. D. Townsend, J. G. Rarity, and P. R. Tapster, �??Single photon interference in 10km long fibre optical fibre interferometer,�?? Electron. Lett. 29, 634-635(1993).
    [CrossRef]
  3. P. D. Townsend, �??Secure key distribution system based on quantum cryptography,�?? Electron. Lett. 30, 809-811(1994).
    [CrossRef]
  4. R. J. Hughes, G. L. Morgan, and C. G. Peterson, �??Quantum key distribution over a 48 km optical fibre network,�?? J. Mod. Phys. 47, 533-547(2000).
  5. C. Gobby, Z. L. Yuan, and A. J. Shields, �??Quantum key distribution over 122km standard telecom fiber,�?? Appl. Phys. Lett. 84, 3762-3764(2004).
    [CrossRef]
  6. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, �??Plug & play systems for quantum cryptography,�?? Appl. Phys. Lett. 70, 793-795(1997).
    [CrossRef]
  7. D. Stucki, N. Gisin, O. Guinnard, R. Ribordy, and H. Zbinden, �??Quantum key distribution over 67 km with a plug&play system,�?? New J. Phys. 4, 41.1-41.8(2002).
    [CrossRef]
  8. M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, and E. Sundberg, �??Experiments on long wavelength (1550nm) �??plug and play�?? quantum cryptography systems,�?? Opt. Express 4, 383-387(1999).
    [CrossRef] [PubMed]
  9. D. S. Bethune and W. P. Risk, �??Autocompensating quantum cryptography,�?? New J. Phys. 4, 42.1-42.15(2002).
    [CrossRef]
  10. C. H. Bennett, �??Quantum cryptography using any two nonorthogonal states,�?? Phys. Rev. Lett. 68, 3121-3124(1992).
    [CrossRef] [PubMed]
  11. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, �??Quantum cryptography,�?? Rev. Mod. Phys. 74, 145-195(2002).
    [CrossRef]
  12. G. Ribordy, J. D. Gautier, H. Zbinden, and N. Gisin, �??Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,�?? Appl. Opt. 37, 2272-2277(1998).
    [CrossRef]
  13. A. Yoshizawa, R. Kaji, and H. Tsuchida, �??10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz,�?? Japanese J. Appl. Phys. 43, L735-L737(2004).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. Gobby, Z. L. Yuan, and A. J. Shields, �??Quantum key distribution over 122km standard telecom fiber,�?? Appl. Phys. Lett. 84, 3762-3764(2004).
[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, �??Plug & play systems for quantum cryptography,�?? Appl. Phys. Lett. 70, 793-795(1997).
[CrossRef]

Electron. Lett. (2)

P. D. Townsend, J. G. Rarity, and P. R. Tapster, �??Single photon interference in 10km long fibre optical fibre interferometer,�?? Electron. Lett. 29, 634-635(1993).
[CrossRef]

P. D. Townsend, �??Secure key distribution system based on quantum cryptography,�?? Electron. Lett. 30, 809-811(1994).
[CrossRef]

J. Mod. Phys. (1)

R. J. Hughes, G. L. Morgan, and C. G. Peterson, �??Quantum key distribution over a 48 km optical fibre network,�?? J. Mod. Phys. 47, 533-547(2000).

Japanese J. Appl. Phys. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, �??10.5 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz,�?? Japanese J. Appl. Phys. 43, L735-L737(2004).
[CrossRef]

New J. Phys. (2)

D. Stucki, N. Gisin, O. Guinnard, R. Ribordy, and H. Zbinden, �??Quantum key distribution over 67 km with a plug&play system,�?? New J. Phys. 4, 41.1-41.8(2002).
[CrossRef]

D. S. Bethune and W. P. Risk, �??Autocompensating quantum cryptography,�?? New J. Phys. 4, 42.1-42.15(2002).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

C. H. Bennett, �??Quantum cryptography using any two nonorthogonal states,�?? Phys. Rev. Lett. 68, 3121-3124(1992).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, �??Quantum cryptography,�?? Rev. Mod. Phys. 74, 145-195(2002).
[CrossRef]

Other (1)

C. H. Bennett and G. Brassard, �??Quantum Cryptography: Public key distribution and coin tossing,�?? in Proc. of the IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175-179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic showing the fibre optic quantum key distribution system with active phase & polarisation compensation. WDM: wavelength division multiplexer; FS: fibre stretcher; PBS: polarising beam combiner/splitter; PC: polarisation controller; ΦA, ΦB: phase modulator.

Fig. 2.
Fig. 2.

The measured quantum bit error rate (QBER) averaged over 5 kbits as a function of bin position. The inset shows the distribution of different values for the QBER. The arrow indicates the QBER obtained in the previous QKD system without active compensation [5].

Fig. 3.
Fig. 3.

(a) the recorded fibre-stretcher voltage, (b) the measured duty cycle and (c) the measured bit rate as a function of time.

Fig. 4.
Fig. 4.

A short section of the recorded fibre stretcher voltage and the corresponding phase compensated as a function of time.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = 2 * sifted_key_size total_photons_received
QBER Phase = 1 Δ φ Δ φ 2 Δ φ 2 1 cos φ 2 d φ

Metrics