Abstract

A symmetrical digital photonic splitting switch with a low insertion loss and a low driving voltage is developed using carrier injection in a silicon-germanium material for optical communication systems and networks at a wavelength of 1.55 µm. The switch structure has been improved based on a traditional 1×2 Y-shaped configuration by using two widened carrier injection regions. The switch has a threshold voltage of 1.0 V and a corresponding threshold current of 85 mA on one of the two output waveguide arms. The calculated driving current density is 5.7 kA/cm2 and the calculated power consumption is 85 mW at the 85 mA of threshold current. The measured insertion loss and the crosstalk are 5.2 dB and -9.6 dB, respectively, at driving voltage over 2 V.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Okayama, T. Ushikubo, and M. Kawahara, �??Low drive voltage y-branch digital optical switch,�?? Electron. Lett. 27, 24-26 (1991).
    [CrossRef]
  2. U. Siebel, R. Hauffe, and K. Petermann, �??Crosstalk-enhanced polymer digital optical switch based on a W-shape,�?? IEEE Photon. Technol. Lett. 12, 40-41 (2000)
    [CrossRef]
  3. J. F. Vinchant, M. Renaud, A. Goutelle, M. Erman, P. Svensson, and L. Thylen, �??Low driving voltage or current digital optical switch on InP for multiwavelength system applications,�?? Electron. Lett. 28, 1135-1137 (1992).
    [CrossRef]
  4. M. N. Khan, B. I. Miller, E. C. Burrows, and C. A. Burrus, �??Crosstalk-, loss-, and length-reduced digital optical Y-branch switches using a double-etch waveguide structure,�?? IEEE Photon. Technol. Lett. 11, 1250-1252 (1999).
    [CrossRef]
  5. S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delâge, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, �??Carrier injection-based digital optical switch with reconfigurable output waveguide arms,�?? IEEE Photon. Technol. Lett. 16, 1038-100 (2004).
    [CrossRef]
  6. Sneh, J. E. Zucker, and B. I. Miller, �??Compact, low-crosstalk, and low-propagation-loss quantum-well y-branch switches,�?? IEEE Photon. Technol. Lett. 8, 1644-1646 (1996).
    [CrossRef]
  7. M. S. Yang, Y. O. Noh, Y. H. Won, and W. Y. Hwang, �??Very low crosstalk 1�?2 digital optical switch integrated with variable optical attenuators,�?? Electron. Lett. 37, 587-588 (2001).
    [CrossRef]
  8. H. Okayama and M. Kawahara, �??Reduction of voltage-length product for y-branch digital optical switch,�?? J. Lightwave Technol. 11, 379-387 (1993).
    [CrossRef]
  9. B. J. Li and S. J. Chua, �??High carrier injection optical switch based on two-mode interference in SiGe alloy,�?? Appl. Phys. Lett. 80, 180-182 (2002).
    [CrossRef]
  10. B. J. Li J. Li, Y. Z. Zhao, X. B. Lin, S. J. Chua, L. Y. Miao, E. A. Fitzgerald, M. L. Lee, and B. S. Chaudhari, �??Ultracompact, multifunctional, and highly integrated 3�?2 photonic switches,�?? Appl. Phys. Lett. 84, 2241-2243 (2004).
    [CrossRef]
  11. Y. L. Liu, E. K. Liu, S. L. Zhang, G. Z. Li, and J. S. Luo, �??Silicon 1�?2digital optical switch using plasma dispersion,�?? Electron. Lett. 30, 130-131 (1994).
    [CrossRef]
  12. N. Keil, H. H. Yao, and C. Zawadzki, �??2�?2 digital optical switch realized by low cost polymer waveguide technology,�?? Electron. Lett. 32, 1470-1471 (1996).
    [CrossRef]
  13. S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, and T. Maruno, �??Low crosstalk and low loss 2�?2 thermo-optic digital switch using silicon resin waveguides,�?? Electron. Lett. 36, 1803-1804 (2000).
    [CrossRef]
  14. M. H. Lee, Y. H. Min, S Park, J. J. Ju, J. Y. Do, and S. K. Park, �??Fully packaged polymeric four arrayed 2�?2 digital optical switch,�?? IEEE Photon. Technol. Lett. 14, 615-617 (2002).
    [CrossRef]
  15. R. Normandin, D. C. Houghton, and M. S. Normandin, �??All-optical, silicon-based, fiber optic modulator using a near cutoff region,�?? Can. J. Phys. 67, 412-418, (1989).
    [CrossRef]
  16. R. R. Whiteman, A. P. Knights, D. George, I. E. Day, A. Vonsovici, A. A. House, G. F. Hopper, and M. Asghari, �??Recent progress in the design, simulation and fabrication of small cross-section silicon-on-insulator VOAs,�?? in Photonics Packaging and Integration III, R. A. Heyler, D. J. Robbins, and G. E. Jabbour, eds., Proc. SPIE 4997, 146-156 (2003).

Appl. Phys. Lett.

B. J. Li and S. J. Chua, �??High carrier injection optical switch based on two-mode interference in SiGe alloy,�?? Appl. Phys. Lett. 80, 180-182 (2002).
[CrossRef]

B. J. Li J. Li, Y. Z. Zhao, X. B. Lin, S. J. Chua, L. Y. Miao, E. A. Fitzgerald, M. L. Lee, and B. S. Chaudhari, �??Ultracompact, multifunctional, and highly integrated 3�?2 photonic switches,�?? Appl. Phys. Lett. 84, 2241-2243 (2004).
[CrossRef]

Can. J. Phys.

R. Normandin, D. C. Houghton, and M. S. Normandin, �??All-optical, silicon-based, fiber optic modulator using a near cutoff region,�?? Can. J. Phys. 67, 412-418, (1989).
[CrossRef]

Electron. Lett.

Y. L. Liu, E. K. Liu, S. L. Zhang, G. Z. Li, and J. S. Luo, �??Silicon 1�?2digital optical switch using plasma dispersion,�?? Electron. Lett. 30, 130-131 (1994).
[CrossRef]

N. Keil, H. H. Yao, and C. Zawadzki, �??2�?2 digital optical switch realized by low cost polymer waveguide technology,�?? Electron. Lett. 32, 1470-1471 (1996).
[CrossRef]

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, and T. Maruno, �??Low crosstalk and low loss 2�?2 thermo-optic digital switch using silicon resin waveguides,�?? Electron. Lett. 36, 1803-1804 (2000).
[CrossRef]

J. F. Vinchant, M. Renaud, A. Goutelle, M. Erman, P. Svensson, and L. Thylen, �??Low driving voltage or current digital optical switch on InP for multiwavelength system applications,�?? Electron. Lett. 28, 1135-1137 (1992).
[CrossRef]

H. Okayama, T. Ushikubo, and M. Kawahara, �??Low drive voltage y-branch digital optical switch,�?? Electron. Lett. 27, 24-26 (1991).
[CrossRef]

M. S. Yang, Y. O. Noh, Y. H. Won, and W. Y. Hwang, �??Very low crosstalk 1�?2 digital optical switch integrated with variable optical attenuators,�?? Electron. Lett. 37, 587-588 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

U. Siebel, R. Hauffe, and K. Petermann, �??Crosstalk-enhanced polymer digital optical switch based on a W-shape,�?? IEEE Photon. Technol. Lett. 12, 40-41 (2000)
[CrossRef]

M. N. Khan, B. I. Miller, E. C. Burrows, and C. A. Burrus, �??Crosstalk-, loss-, and length-reduced digital optical Y-branch switches using a double-etch waveguide structure,�?? IEEE Photon. Technol. Lett. 11, 1250-1252 (1999).
[CrossRef]

S. Abdalla, S. Ng, P. Barrios, D. Celo, A. Delâge, S. El-Mougy, I. Golub, J.-J. He, S. Janz, R. McKinnon, P. Poole, S. Raymond, T. J. Smy, and B. Syrett, �??Carrier injection-based digital optical switch with reconfigurable output waveguide arms,�?? IEEE Photon. Technol. Lett. 16, 1038-100 (2004).
[CrossRef]

Sneh, J. E. Zucker, and B. I. Miller, �??Compact, low-crosstalk, and low-propagation-loss quantum-well y-branch switches,�?? IEEE Photon. Technol. Lett. 8, 1644-1646 (1996).
[CrossRef]

M. H. Lee, Y. H. Min, S Park, J. J. Ju, J. Y. Do, and S. K. Park, �??Fully packaged polymeric four arrayed 2�?2 digital optical switch,�?? IEEE Photon. Technol. Lett. 14, 615-617 (2002).
[CrossRef]

J. Lightwave Technol.

H. Okayama and M. Kawahara, �??Reduction of voltage-length product for y-branch digital optical switch,�?? J. Lightwave Technol. 11, 379-387 (1993).
[CrossRef]

Proc. SPIE

R. R. Whiteman, A. P. Knights, D. George, I. E. Day, A. Vonsovici, A. A. House, G. F. Hopper, and M. Asghari, �??Recent progress in the design, simulation and fabrication of small cross-section silicon-on-insulator VOAs,�?? in Photonics Packaging and Integration III, R. A. Heyler, D. J. Robbins, and G. E. Jabbour, eds., Proc. SPIE 4997, 146-156 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig.1.
Fig.1.

Schematic diagram of a symmetrical waveguide Y-branch digital photonic splitting switch (a) top view and (b) A-A cross-section view. (not in scales)

Fig. 2.
Fig. 2.

Simulation results of the switch using beam propagation method, (a) switch-ON state on both branches, (b) switch-ON state on branch 2 and OFF state on branch 1, (c) switch-ON state on branch 1 and OFF state on branch 2.

Fig. 3.
Fig. 3.

Output optical power versus the applied forward bias.

Metrics