Abstract

A variable -transmittance apodizing filter has been designed and demonstrated at 157 nm. The Gaussian transmission function is created by flowing oxygen gas, which is absorptive below 185 nm, between the two spherical surfaces of meniscus lenses. By varying the oxygen partial pressure, the degree of apodization can be controlled.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Jacquinot and B. Roizen-Dossier, in Progress in Optics v. 3, ed. E. Wolf (Amsterdam, North Holland Publishing Company and New York, J. Wiley and Sons, 1964), pp. 29.
    [CrossRef]
  2. D. W. Wilson, P. D. Maker, J. T. Trauger, and T. B. Hull, �??Eclipse apodization: realization of occulting spots and Lyot masks,�?? in High-Contrast Imaging for Exo-Planet Detection, A. B. Schultz and R. G. Lyons, eds., Proc. SPIE 4860, 361 (2003).
  3. M. E. MacDonald, D. P. Ryan-Howard, and E. C. Wack, �??Pupil apodization as a means of mitigating diffraction effects in remote sensing instruments,�?? in Earth Observing Systems VI, W. L. Barnes, ed., Proc. SPIE 4483, 258 (2002).
  4. R. J. Davis, W. C. Karl, A. K. Swan, and M. Selim �?nlü, �??Capabilities and limitations of pupil-plane filters for superresolution and image enhancement,�?? Opt. Express 12, 4150 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4150
    [CrossRef] [PubMed]
  5. M. Martínez-Corral, C. Inbáñez-López, G. Saavedra, and M. T. Caballero, �??Axial gain resolution in optical sectioning fluorescence microscopy by shaded-ring filters,�?? Opt. Express 11, 1740 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1740
    [CrossRef] [PubMed]
  6. A. F. Kurtz and M. E. Harrigan, �??Gaussian beam apodization and application in a laser printer,�?? in Laser Beam Shaping, F. M. Dickey and S. C. Holswade, eds., Proc. SPIE 4095, 176 (2000).
  7. S. J. Wein and W. L. Wolfe, �??A small-angle scatterometer,�?? in Stray Light and contamination in Optical Systems, R. Breault, ed., Proc. SPIE 967, 27 (1988).
  8. S. J. Wein and W. L. Wolfe, �??Gaussian-apodized apertures and small-angle scatter measurement,�?? Opt. Eng. 28, 273 (1989).
    [CrossRef]
  9. G. Owen, R. F. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bünau, and N. I. Maluf, �??1/8 infinitym optical lithography,�?? J. Vac. Sci. Technol. B 10, 3032 (1992).
    [CrossRef]
  10. R. von Bünau, G. Owen, and R. F. Pease, �??Depth of focus enhancement in optical lithography,�?? J. Vac. Sci. Technol. B 10, 3047 (1992).
  11. P. Gräupner, A. Göhnermeier, M. Lowisch, R. Garreis, D. Flagello, S. Hansen, R. Socha, and C. Köhler, �??Solutions for printing sub 100nm contacts with ArF,�?? in Optical Microlithography VI, A. Yen ed., Proc. SPIE 4691, 503 (2002).
    [CrossRef]
  12. M. Yun, L. Liu, J. Sun, and D. Liu, �??Transverse or axial superresolution with radial birefringent filter,�?? J. Opt. Soc. Am. A 21, 1869 (2004).
    [CrossRef]
  13. M. Martínez-Corral, L. Muñoz-Escrivá, M. Kowalczyk, and T. Cichocki, �??One-dimensional iterative algorithm for three-dimensional point-spread function engineering,�?? Opt. Lett. 26, 1861 (2001).
    [CrossRef]
  14. G. Boyer, �??New class of axially apodizing filters for confocal scanning microscopy,�?? J. Opt. Soc. Am. A 19, 584 (2002).
  15. Hideo Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978), pp. 162-268.
  16. M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1965) pp. 511 and 435.
    [CrossRef]
  17. V. Liberman, T. M. Bloomstein, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. Van Peski, and K. Orvek, �??Materials issues for optical components and photomasks in 157 nm lithography,�?? J. Vac. Sci. Technol. B 17, 3273 (1999).
  18. Peter Warneck, Chemistry of the Natural Atmosphere (Academic Press, New York, 1988), pg. 100.
  19. W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, �??Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 12,�?? Jet Propulsion Laboratory Publication 97-4, January 15, 1997.

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

V. Liberman, T. M. Bloomstein, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. Van Peski, and K. Orvek, �??Materials issues for optical components and photomasks in 157 nm lithography,�?? J. Vac. Sci. Technol. B 17, 3273 (1999).

G. Owen, R. F. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bünau, and N. I. Maluf, �??1/8 infinitym optical lithography,�?? J. Vac. Sci. Technol. B 10, 3032 (1992).
[CrossRef]

R. von Bünau, G. Owen, and R. F. Pease, �??Depth of focus enhancement in optical lithography,�?? J. Vac. Sci. Technol. B 10, 3047 (1992).

Jet Propulsion Laboratory Publication

W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, �??Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 12,�?? Jet Propulsion Laboratory Publication 97-4, January 15, 1997.

Opt. Eng.

S. J. Wein and W. L. Wolfe, �??Gaussian-apodized apertures and small-angle scatter measurement,�?? Opt. Eng. 28, 273 (1989).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

A. F. Kurtz and M. E. Harrigan, �??Gaussian beam apodization and application in a laser printer,�?? in Laser Beam Shaping, F. M. Dickey and S. C. Holswade, eds., Proc. SPIE 4095, 176 (2000).

S. J. Wein and W. L. Wolfe, �??A small-angle scatterometer,�?? in Stray Light and contamination in Optical Systems, R. Breault, ed., Proc. SPIE 967, 27 (1988).

P. Gräupner, A. Göhnermeier, M. Lowisch, R. Garreis, D. Flagello, S. Hansen, R. Socha, and C. Köhler, �??Solutions for printing sub 100nm contacts with ArF,�?? in Optical Microlithography VI, A. Yen ed., Proc. SPIE 4691, 503 (2002).
[CrossRef]

Other

P. Jacquinot and B. Roizen-Dossier, in Progress in Optics v. 3, ed. E. Wolf (Amsterdam, North Holland Publishing Company and New York, J. Wiley and Sons, 1964), pp. 29.
[CrossRef]

D. W. Wilson, P. D. Maker, J. T. Trauger, and T. B. Hull, �??Eclipse apodization: realization of occulting spots and Lyot masks,�?? in High-Contrast Imaging for Exo-Planet Detection, A. B. Schultz and R. G. Lyons, eds., Proc. SPIE 4860, 361 (2003).

M. E. MacDonald, D. P. Ryan-Howard, and E. C. Wack, �??Pupil apodization as a means of mitigating diffraction effects in remote sensing instruments,�?? in Earth Observing Systems VI, W. L. Barnes, ed., Proc. SPIE 4483, 258 (2002).

Hideo Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978), pp. 162-268.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1965) pp. 511 and 435.
[CrossRef]

Peter Warneck, Chemistry of the Natural Atmosphere (Academic Press, New York, 1988), pg. 100.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic drawing of the experimental test-bed.

Fig. 2.
Fig. 2.

Intensity map through a flood-exposed apodizer cell at different levels of oxygen. Each solid trace represents a separate x or y directional scan. The dashed curves represent the theoretical intensity maps. In order to match the position of the diffraction nulls, the Airy distribution for a 65-µm, rather than 75-µm pinhole has been used in computing the theoret ical curves.

Fig. 3.
Fig. 3.

Intensity map in the image plane with 1 atm N2 and 2 atm O2 flowing through the apodizing cell. The dashed curves represent the theoretical profiles.

Tables (1)

Tables Icon

Table 1. Rate Constants Used in Eq. (2), at 157 nm [14, 17, 18]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( r ) = exp ( k gas R r 2 )
τ O 3 = 1 4 ( k b n m k d j a j c ) 1 2

Metrics