Abstract

We investigate dual concentric core and microstructure fiber geometries for dispersion compensation. Dispersion values as large as -59 000 ps/(nm km) are achieved, over a broad wavelength range with full width at half maximum exceeding 100 nm. The trade-off between large dispersion and mode area is studied. Geometries with an effective mode area of 30µm2 and dispersion -19 000 ps/(nm km) and 80µm2 with -1600 ps/(nm km) are proposed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russel, �??Dispersion compensation using single-material fibers,�?? IEEE Photon. Tech. Lett. 11, 674�??676 (1999).
    [CrossRef]
  2. L. P. Shen, W.-P. Huang, G. X. Chen, and S. S. Jian, �??Design and optimization of photonic crystal fibers for broad-band dispersion compensation,�?? IEEE Photon. Tech. Lett. 15, 540�??542 (2003).
    [CrossRef]
  3. L. P. Shen, W.-P. Huang, and S. S. Jian, �??Design of photonic crystal fibers for dispersion-related applications,�?? J. Lightwave Tech. 21, 1644�??1651 (2003).
    [CrossRef]
  4. R. K. Sinha and S. K. Varshney, �??Dispersion properties of photonic crystal fibers,�?? Microwave and Optical Tech. Lett. 37, 129�??132 (2003).
    [CrossRef]
  5. F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, �??Characterization of microstructured optical fibers for wideband dispersion compensation,�?? J. Opt. Soc. Am. A 20, 1958�??1962 (2003).
    [CrossRef]
  6. Y. Ni, L. An, J. Peng, and C. Fan, �??Dual-core photonic crystal fiber for dispersion compensation,�?? IEEE Photon. Tech. Lett. 16, 1516�??1518 (2004).
    [CrossRef]
  7. B. Zsigri, J. Laegsgaard, and A. Bjarklev, �??A novel photonic crystal fibre design for dispersion compensation,�?? J. Opt. A: Pure Appl. Opt. 6, 717�??720 (2004).
    [CrossRef]
  8. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, �??A novel design of a dispersion compensating fiber,�?? IEEE Photon. Technol. Lett. 8, 1510�??1512 (1996).
    [CrossRef]
  9. J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, �??-1800 ps(nm.km) chromatic dispersion at 1.55 µm in dual cocentric core fibre,�?? Electronics Lett. 36, 1689�??1691 (2000).
    [CrossRef]
  10. L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, �??Dispersion compensating fibers,�?? Opt. Fiber Technol. 6, 164�??180 (2000).
    [CrossRef]
  11. J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, �??Conception, realization, and characterization of a very high negative chromatic dispersion fiber,�?? Opt. Fiber Technol. 8, 89�??105 (2002).
    [CrossRef]
  12. K. Pande and B. P. Pal, �??Design optimization of a dual-core dipersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers,�?? Appl. Opt. 42, 3785�??3791 (2003).
    [CrossRef] [PubMed]
  13. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, �??An all-dielectric coaxial waveguide,�?? Science 289, 415 (2000).
    [CrossRef] [PubMed]
  14. G. Ouyang, Y. Xu, and A. Yariv, �??Theoretical study on dispersion compensation in air-core Bragg fibers,�?? Opt. Express 10, 899�??908 (2002) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-899">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-899</a>.
    [PubMed]
  15. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, �??Dispersion tailoring and compensation by model interactions in OmniGuide fibers,�?? Opt. Express 11, 1175�??1196 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1175">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1175</a>.
    [CrossRef] [PubMed]
  16. C. D. Poole, J. M.Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, �??Optical fiber-based dispersion compensation using higher order modes near cutoff�??, J. Lightwave Technol. 12, 1746�??1758 (1994).
    [CrossRef]
  17. A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, �??Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,�?? Electronics Lett. 36, 1946�??1947 (2000).
    [CrossRef]
  18. S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, �??All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000-km transmission at 40 Gb/s,�?? IEEE Photon. Tech. Lett. 13, 632�??634 (2001).
    [CrossRef]
  19. S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, �??Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,�?? Electronics Lett. 38, 1507�??1508 (2002).
    [CrossRef]
  20. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173�??190 (2001) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>.
    [CrossRef] [PubMed]
  21. G. P. Agrawal, Nonlinear Fiber Optics (Academic, London, 1995).
  22. R. Iliew, C. Etrich, and F. Lederer, �??Remote coupling in Bragg fibers,�?? Opt. Lett. 29, 1596�??1598 (2004).
    [CrossRef] [PubMed]
  23. M. Vaziri and C.-L. Chen, �??An etched two-mode fiber modal coupling element,�?? J. Lightwave Tech. 15, 474�??480 (1997).
    [CrossRef]

Appl. Opt. (1)

Electronics Lett. (3)

S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, �??Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,�?? Electronics Lett. 38, 1507�??1508 (2002).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, �??-1800 ps(nm.km) chromatic dispersion at 1.55 µm in dual cocentric core fibre,�?? Electronics Lett. 36, 1689�??1691 (2000).
[CrossRef]

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, �??Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,�?? Electronics Lett. 36, 1946�??1947 (2000).
[CrossRef]

IEEE Photon. Tech. Lett. (4)

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, �??All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000-km transmission at 40 Gb/s,�?? IEEE Photon. Tech. Lett. 13, 632�??634 (2001).
[CrossRef]

Y. Ni, L. An, J. Peng, and C. Fan, �??Dual-core photonic crystal fiber for dispersion compensation,�?? IEEE Photon. Tech. Lett. 16, 1516�??1518 (2004).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russel, �??Dispersion compensation using single-material fibers,�?? IEEE Photon. Tech. Lett. 11, 674�??676 (1999).
[CrossRef]

L. P. Shen, W.-P. Huang, G. X. Chen, and S. S. Jian, �??Design and optimization of photonic crystal fibers for broad-band dispersion compensation,�?? IEEE Photon. Tech. Lett. 15, 540�??542 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, �??A novel design of a dispersion compensating fiber,�?? IEEE Photon. Technol. Lett. 8, 1510�??1512 (1996).
[CrossRef]

J. Lightwave Tech. (2)

M. Vaziri and C.-L. Chen, �??An etched two-mode fiber modal coupling element,�?? J. Lightwave Tech. 15, 474�??480 (1997).
[CrossRef]

L. P. Shen, W.-P. Huang, and S. S. Jian, �??Design of photonic crystal fibers for dispersion-related applications,�?? J. Lightwave Tech. 21, 1644�??1651 (2003).
[CrossRef]

J. Lightwave Technol. (1)

C. D. Poole, J. M.Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, �??Optical fiber-based dispersion compensation using higher order modes near cutoff�??, J. Lightwave Technol. 12, 1746�??1758 (1994).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

B. Zsigri, J. Laegsgaard, and A. Bjarklev, �??A novel photonic crystal fibre design for dispersion compensation,�?? J. Opt. A: Pure Appl. Opt. 6, 717�??720 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Microwave and Optical Tech. Lett. (1)

R. K. Sinha and S. K. Varshney, �??Dispersion properties of photonic crystal fibers,�?? Microwave and Optical Tech. Lett. 37, 129�??132 (2003).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (2)

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, �??Dispersion compensating fibers,�?? Opt. Fiber Technol. 6, 164�??180 (2000).
[CrossRef]

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, �??Conception, realization, and characterization of a very high negative chromatic dispersion fiber,�?? Opt. Fiber Technol. 8, 89�??105 (2002).
[CrossRef]

Opt. Lett. (1)

Science (1)

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, �??An all-dielectric coaxial waveguide,�?? Science 289, 415 (2000).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, London, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The studied geometries: microstructure fibers (a)–(c) and the dual-core fiber (d). The refractive index of the core (black) is varied in each geometry. In (a)–(c) the material of the fiber (grey) is silica and the refractive index is 1.444. The cladding is formed by air holes (white). One ring of air holes is used as a defect layer. In (a) the ring of air holes is removed. In (b) and (c) the radius of the holes is reduced to r=0.19P and r=0.3P, respectively. In the dual core geometry (d) white represents refractive index 1.2114 (the average index of the cladding of the microstucture fiber), black is the core, and grey is the outer core. Three values for the outer core refractive index are considered: 1.444, 1.3859, and 1.299. They correspond to the average values of the defect rings of the microstructure fibers in (a)–(c), respectively. The color coding of the different geometries used in Fig. 4 is shown next to the figures. Dual core fibers are represented by dashed curves with the same colors than the corresponding microstructure fibers.

Fig. 2.
Fig. 2.

(a) Effective index of three lowest energy fiber modes. Two lowest energy modes are degenerate (dashed curve). (b) Dispersion parameter calculated from the third mode [solid curve in (a)]. Geometry of the fiber is depicted in Fig. 1(a). The refractive index of the fiber core is ncore =1.753 and the period of the cladding lattice is P=1.163 µm.

Fig. 3.
Fig. 3.

At short wavelengths the eigenmodes of the microstructure fiber (a) and the dual-core fiber (c) are confined to the fiber core and at long wavelengths to the cladding defect (b) and outer core (d), respectively.

Fig. 4.
Fig. 4.

(a) Largest value of the negative dispersion parameter D for the different geometries as a function of the refractive index of the core ncore . (b) The effective areas A eff of the eigenmodes at the wavelength λ=1.55µm at which the mode changes from the inner core to the outer core. (c) Periods P of the microstructure fibers. The value of the period is adjusted so as to get the largest negative dispersion for the wavelength λ=1.55µm. (d) The full width at half maximum (FWHM) of the negative dispersion. The color coding of the curves is explained in Fig. 1. Solid blue curve represents the geometry of Fig. 1(a), red curve represents (b), and black curve (c). The dashed curves represent dual-core geometries: blue dashed curve has outer core index 1.444, red 1.3859, and black 1.299. Thus the colors indicate the microstructure geometry and the corresponding average dual-core geometry.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D = λ c d 2 n eff d λ 2 ,
A eff = [ I ( r ) d r ] 2 I 2 ( r ) d r ,

Metrics