Abstract

A Bragg fiber design with potential for applications in metro networks is proposed for the first time. The average dispersion of the designed fiber is 10 ps/km.nm in the C-band, and in view of its estimated loss being very low, such a Bragg fiber should enable ultra low-loss DWDM transmission over 100 km at 10 Gbits/s. A Bragg fiber based metro network is an attractive proposition because it would not require any amplifier and dispersion compensator for distances ≈100 km. This should significantly reduce installation and operational cost, and complexity of a metro network.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, �??10-Gb/s transmission of 1.55-µm directly modulated signal over 100 km of negative dispersion fiber,�?? IEEE Photon. Tech. Lett. 13, 735�??737 (2001).
    [CrossRef]
  2. J. Ryan, �??Fiber considerations for metropolitan networks,�?? Alcatel Telecom. Rev. 1st quarter, 52�??56 (2002).
  3. T. Okuno, H. Hatayama, K. Soma, T. Sasaki, M. Onishi, and M. Shigematsu, �??Negative dispersion-flattened fibre suitable for Gbit/s directly modulated signal transmission in whole telecommunication band,�?? Elec. Lett. 40, 723�??724 (2004).
    [CrossRef]
  4. P. Yeh, A. Yariv, and E. Marom, �??Theory of Bragg fibers,�?? J. Opt. Soc. Am. 68, 1196�??1201 (1978).
    [CrossRef]
  5. D. Culverhouse, A. Kruse, C.Wang, K. Ennser, and R. Vodhanel, �??Corning MetroCor fiber and its application in metropolitan networks,�?? (2002). White paper at <a href= http://www.corning.com/docs/opticalfiber/wp5078_ 7_00.pdf">http://www.corning.com/docs/opticalfiber/wp5078_ 7_00.pdf</a>
  6. "Alcatel 6911, TeraLight TM Metro Fiber,�?? (2002). <a href= "http://www.alcatelcable.com/Products/Fiber/data-sheets/6911_ds_rev0.pdf">http://www.alcatelcable.com/Products/Fiber/data-sheets/6911_ds_rev0.pdf</a>
  7. M. Tanaka, T. Okuno, H. Omori, T. Kato, Y. Yokoyama, S. Takaoka, K. Kunitake, K. Uchiyama, S. Hanazuka, and M. Nishimura, �??Water-peak-suppressed non-zero dispersion shifted fiber for full spectrum coarse WDM transmission in metro network,�?? in OFC 2002 Technical Digest, (Optical Society of America, Washington, D.C., 2002), pp. 171-173.
  8. I. Sogawa, �??Study on full spectrum directly modulated CWDM transmission of 10 Gb/s per channel over water-peak-suppressed nonzero dispersion shifted fiber,�?? in Proc. of ECOC 2002. 8.2.1 (Copenhagen, Denmark, 2002).
  9. Y. Xu, G. X. Ouyang, R. K. Lee, and A. Yariv, �??Asymptotic matrix theory of Bragg fibers,�?? J. Lightwave Tech. 20, 428�??439 (2002).
    [CrossRef]
  10. S. Guo, S. Albin, and R. S. Rogowski, �??Comparative analysis of Bragg fibers,�?? Opt. Express 12, 198�??207 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-198">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-198</a>.
    [CrossRef] [PubMed]
  11. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, �??Dispersion tailoring and compensation by modal interactions in omniguide fibers,�?? Opt. Express 11, 1175 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1175">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1175</a>
    [CrossRef] [PubMed]
  12. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, �??External reflection from omnidirectional dielectric mirror fibers,�?? Science 296, 510�??513 (2002).
    [CrossRef] [PubMed]
  13. Y. Danziger and D. Askegard, �??High-order-mode fiber - an innovative approach to chromatic dispersion management that enables optical networking in long-haul high-speed transmission systems,�?? Opt. Networks Mag. 2, 40�??50 (2001).
  14. S. Dasgupta, B. P. Pal, and M. R. Shenoy, �??Design of a Low Loss Bragg Fiber with High Negative Dispersion for the TE01 Mode,�?? in Frontiers in Optics 2004 Technical Digest, FWH49 (Rochester, USA, 2004).
  15. Y. Xu, A. Yariv, J. G. Fleming, and S. Y. Lin, �??Asymptotic analysis of silicon based Bragg fibers,�?? Opt. Express 11, 1039�??1049 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1039">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1039</a>
    [CrossRef] [PubMed]

Alcatel Telecom. Rev. 1st quarter 2002 (1)

J. Ryan, �??Fiber considerations for metropolitan networks,�?? Alcatel Telecom. Rev. 1st quarter, 52�??56 (2002).

ECOC 2002 (1)

I. Sogawa, �??Study on full spectrum directly modulated CWDM transmission of 10 Gb/s per channel over water-peak-suppressed nonzero dispersion shifted fiber,�?? in Proc. of ECOC 2002. 8.2.1 (Copenhagen, Denmark, 2002).

Elec. Lett. (1)

T. Okuno, H. Hatayama, K. Soma, T. Sasaki, M. Onishi, and M. Shigematsu, �??Negative dispersion-flattened fibre suitable for Gbit/s directly modulated signal transmission in whole telecommunication band,�?? Elec. Lett. 40, 723�??724 (2004).
[CrossRef]

Frontiers in Optics 2004 (1)

S. Dasgupta, B. P. Pal, and M. R. Shenoy, �??Design of a Low Loss Bragg Fiber with High Negative Dispersion for the TE01 Mode,�?? in Frontiers in Optics 2004 Technical Digest, FWH49 (Rochester, USA, 2004).

IEEE Photon. Tech. Lett. (1)

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, �??10-Gb/s transmission of 1.55-µm directly modulated signal over 100 km of negative dispersion fiber,�?? IEEE Photon. Tech. Lett. 13, 735�??737 (2001).
[CrossRef]

J. Lightwave Tech. (1)

Y. Xu, G. X. Ouyang, R. K. Lee, and A. Yariv, �??Asymptotic matrix theory of Bragg fibers,�?? J. Lightwave Tech. 20, 428�??439 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

OFC 2002 (1)

M. Tanaka, T. Okuno, H. Omori, T. Kato, Y. Yokoyama, S. Takaoka, K. Kunitake, K. Uchiyama, S. Hanazuka, and M. Nishimura, �??Water-peak-suppressed non-zero dispersion shifted fiber for full spectrum coarse WDM transmission in metro network,�?? in OFC 2002 Technical Digest, (Optical Society of America, Washington, D.C., 2002), pp. 171-173.

Opt. Express (3)

Opt. Networks Mag. (1)

Y. Danziger and D. Askegard, �??High-order-mode fiber - an innovative approach to chromatic dispersion management that enables optical networking in long-haul high-speed transmission systems,�?? Opt. Networks Mag. 2, 40�??50 (2001).

Science (1)

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, �??External reflection from omnidirectional dielectric mirror fibers,�?? Science 296, 510�??513 (2002).
[CrossRef] [PubMed]

Other (2)

D. Culverhouse, A. Kruse, C.Wang, K. Ennser, and R. Vodhanel, �??Corning MetroCor fiber and its application in metropolitan networks,�?? (2002). White paper at <a href= http://www.corning.com/docs/opticalfiber/wp5078_ 7_00.pdf">http://www.corning.com/docs/opticalfiber/wp5078_ 7_00.pdf</a>

"Alcatel 6911, TeraLight TM Metro Fiber,�?? (2002). <a href= "http://www.alcatelcable.com/Products/Fiber/data-sheets/6911_ds_rev0.pdf">http://www.alcatelcable.com/Products/Fiber/data-sheets/6911_ds_rev0.pdf</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Refractive index profile of a Bragg fiber

Fig. 2.
Fig. 2.

Dispersion spectrum of the TE01 mode of proposed positive dispersion flattened Bragg metro-fiber

Fig. 3.
Fig. 3.

Dispersion sprectrum of the TE01 mode of proposed negative dispersion flattened Bragg metro-fiber. The second layer of the fiber has a thickness twice than that predicted by the quarter-wave stack condition. The fiber exhibits negative dispersion beccause of the presence of this defect layer

Tables (1)

Tables Icon

Table 1. Variation of radiation loss of the TE01 mode of the proposed Bragg metro-fiber

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k 1 l 1 = k 2 l 2 = π 2

Metrics