Abstract

We report on the fabrication, by a 26 MHz stretched-cavity femtosecond Ti:sapphire oscillator, of optical waveguides in different glass substrates, and their optical characterization. Operation of these waveguides in the telecom range at 1.55 µm is demonstrated. Digital holography microscopy is used to measure their refractive index profile. The results evidence a strong dependence of the fabrication process on the glass matrix. ©2005 Optical Society of America

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, �??Writing waveguides in glass with a femtosecond laser,�?? Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, �??Photowritten optical waveguides in various glasses with ultrashort pulse laser,�?? Appl. Phys. Lett. 71, 3329-3331 (1997).
    [CrossRef]
  3. D. Homoelle, S. Wielandy, A.L. Gaeta, N.F. Borrelli, and C. Smith, �??Infrared photosensitivity in silica glasses exposed to femtoseconde laser pulses,�?? Opt. Lett. 24, 1311-1313 (1999).
    [CrossRef]
  4. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, �??Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,�?? Appl. Opt. 41, 4360-4364 (2002).
    [CrossRef] [PubMed]
  5. A.M. Streltsov and N.M. Borrelli, �??Study of femtosecond-laser-written waveguides in glasses,�?? J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  6. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, S. De Silvestri, �??Femtosecond micromachining of symmetric waveguides at 1.5 µm by astigmatic beam focusing,�?? Opt. Lett. 27, 1938-1941 (2002).
    [CrossRef]
  7. J.W. Chan, T. Huser, S.H. Risbud, J.S. Hayden and D.M. Krol, �??Waveguide fabrication in phosphate glasses using femtosecond laser pulses,�?? Appl. Phys. Lett. 82, 2371-2373 (2003).
    [CrossRef]
  8. C. Florea, and K. A. Winick, �??Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,�?? J. Lightwave Technol. 21, 246-253 (2003).
    [CrossRef]
  9. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, �??Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,�?? Appl. Phys. A 77, 109-111 (2003).
    [CrossRef]
  10. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, �??Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,�?? Opt. Lett. 28, 2491-2493 (2003).
    [CrossRef] [PubMed]
  11. R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, �??Optical waveguide writing with a diode-pumped femtosecond oscillator,�?? Opt. Lett. 29, 1900 (2004).
    [CrossRef] [PubMed]
  12. A.M. Streltsov and N.F. Borrelli, �?? Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,�?? Opt. Lett. 26, 42-43 (2001).
    [CrossRef]
  13. C.B. Schaffer, A. Brodeur, J.F. Garcia, and E. Mazur, �??Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,�?? Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  14. K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, �??Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,�?? Opt. Lett. 26, 1516- 1518 (2001).
    [CrossRef]
  15. K. Minoshima, A.M. Kowalevicz, E.P. Ippen, and J.G. Fujimoto, �??Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,�?? Opt. Express 10, 645-652 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-645.
    [PubMed]
  16. P. Oberson, B. Gisin, B. Huttner, and N. Gisin, �??Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides,�?? Appl. Opt. 37, 7268-7272 (1998).
    [CrossRef]
  17. R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, P. B. Corkum, �??Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures,�?? Opt. Express 11, 775-781 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-775.
    [CrossRef] [PubMed]
  18. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, �??Polarization imaging by use of digital holography,�?? Appl. Opt. 41, 27-37 (2002).
    [CrossRef] [PubMed]
  19. V. Shcheslavskiy, V. V. Yakovlev, A. Ivanov, �??High-energy self-starting femtosecond Cr4+ Mg2 SiO4 oscillator operating at a low repetition rate,�?? Opt. Lett. 26, 1999-2001 (2001).
    [CrossRef]
  20. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini and R. Meucci, �??Whole optical wavefields reconstruction by digital holography,�?? Opt. Express 9, 294-302 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-294
    [CrossRef] [PubMed]
  21. P. Ferraro, S. de Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, �??Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,�?? Appl. Opt. 42, 1938-1946 (2003).
    [CrossRef] [PubMed]
  22. P. Ferraro, S. De Nicola. A. Finizio, G. Pierattini, G. Coppola, �??Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method,�?? Appl. Phys. Lett. 85, 2709-2711 (2004).
    [CrossRef]
  23. C.B. Schaffer, J.F. Garcia, E. Mazur,�?? Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,�?? Appl. Phys. A 76, 351-354 (2003).
    [CrossRef]

Appl. Opt. (4)

Appl. Phys. A (2)

C.B. Schaffer, J.F. Garcia, E. Mazur,�?? Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,�?? Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, �??Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,�?? Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

P. Ferraro, S. De Nicola. A. Finizio, G. Pierattini, G. Coppola, �??Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method,�?? Appl. Phys. Lett. 85, 2709-2711 (2004).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, �??Photowritten optical waveguides in various glasses with ultrashort pulse laser,�?? Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

J.W. Chan, T. Huser, S.H. Risbud, J.S. Hayden and D.M. Krol, �??Waveguide fabrication in phosphate glasses using femtosecond laser pulses,�?? Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (9)

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, �??Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,�?? Opt. Lett. 28, 2491-2493 (2003).
[CrossRef] [PubMed]

R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, �??Optical waveguide writing with a diode-pumped femtosecond oscillator,�?? Opt. Lett. 29, 1900 (2004).
[CrossRef] [PubMed]

K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, �??Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,�?? Opt. Lett. 26, 1516- 1518 (2001).
[CrossRef]

V. Shcheslavskiy, V. V. Yakovlev, A. Ivanov, �??High-energy self-starting femtosecond Cr4+ Mg2 SiO4 oscillator operating at a low repetition rate,�?? Opt. Lett. 26, 1999-2001 (2001).
[CrossRef]

D. Homoelle, S. Wielandy, A.L. Gaeta, N.F. Borrelli, and C. Smith, �??Infrared photosensitivity in silica glasses exposed to femtoseconde laser pulses,�?? Opt. Lett. 24, 1311-1313 (1999).
[CrossRef]

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, S. De Silvestri, �??Femtosecond micromachining of symmetric waveguides at 1.5 µm by astigmatic beam focusing,�?? Opt. Lett. 27, 1938-1941 (2002).
[CrossRef]

K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, �??Writing waveguides in glass with a femtosecond laser,�?? Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

A.M. Streltsov and N.F. Borrelli, �?? Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,�?? Opt. Lett. 26, 42-43 (2001).
[CrossRef]

C.B. Schaffer, A. Brodeur, J.F. Garcia, and E. Mazur, �??Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,�?? Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup for optical waveguide writing.

Fig. 2.
Fig. 2.

(a) dots: autocorrelation of the pulse in the focus of the 100× objective without any precompression; solid line fit by a sech2 pulse obtained by adding to the pulse spectrum a group delay dispersion (GDD) of 2500 fs2; (b) dots: autocorrelation of the pulse with pre-compression; solid line: fit by a pulse with residual GDD of ±200 fs2.

Fig. 3.
Fig. 3.

Experimental set-up of DHM; PBS: polarizing beam-splitter; M: mirror; MO: microscope objective; BS: beam-splitter; PH: pin-hole; d: reconstruction distance; S: sample.

Fig. 4.
Fig. 4.

DIC images from above of waveguides written in different glass substrates. Insets show cross sections of the end faces. Pulse energy and writing speed: 15 nJ and 1 mm/s for fused silica; 13 nJ and 2 mm/s for phosphate glass; 10 nJ and 1 mm/s for IOG10; 13 nJ and 7 mm/s for 0211.

Fig. 5.
Fig. 5.

Refractive index profile by DHM of a waveguide written in Schott IOG10 glass.

Fig. 6.
Fig. 6.

Refractive index profile by DHM of a waveguide written in Corning 0211 glass.

Fig. 7.
Fig. 7.

Left: experimental near field mode profile at 1.55 µm of a waveguide fabricated in Schott IOG10 glass; right: simulated near field based on the refractive index profile of Fig. 5.

Fig. 8.
Fig. 8.

Left: experimental near field mode profile at 1.55 µm of a waveguide fabricated in Corning 0211 glass; right: simulated near field based on the refractive index profile of Fig. 6.

Metrics