Abstract

Polarization gating has been widely used to selectively probe the structure of superficial biological tissue. However, the penetration depth selectivity of polarization gating has not been well understood. Using polarized light Monte Carlo simulations, we investigated how the optical properties of a scattering medium and light collection geometry affect the penetration depth of polarization gating. We show that, for a wide range of optical properties, polarization gating enables attaining a very shallow penetration depth, which is on the order of the mean free path length. Furthermore, we discuss the mechanisms responsible for this surprisingly short depth of penetration of polarization gating. We show that polarization-gated signal is generated primarily by photons emerging from the surface of the medium within a few mean free path lengths from the point of incidence.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, "Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology," Opt. Express 5, 302-317 (1999), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-5-13-302">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-5-13-302</a>
    [CrossRef] [PubMed]
  2. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, "Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms," Appl. Opt. 43, 1308-1319 (2004)
    [CrossRef] [PubMed]
  3. A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: Design and performance," J. Biomed. Opt. 7, 388-397 (2002)
    [CrossRef] [PubMed]
  4. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
    [CrossRef] [PubMed]
  5. S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000)
    [CrossRef] [PubMed]
  6. Y. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromine, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron. 9, 243- 257 (2003).
    [CrossRef]
  7. S. P. Morgan and M. E. Ridgway, "Polarization properties of light backscattered from a two layer scattering medium," Opt. Express 7, 395-402 (2000), <"a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12- 395">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12- 395</a>
    [CrossRef] [PubMed]
  8. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7, 378-387 (2002)
    [CrossRef] [PubMed]
  9. V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999)
    [CrossRef]
  10. R. R. Anderson, "Polarized-light examination and photography of the skin," Arch. Dermatol. 127, 1000- 1005 (1991)
    [CrossRef] [PubMed]
  11. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, "Use of polarized-light to discriminate short-path photons in a multiply scattering medium," Appl. Opt. 31, 6535-6546 (1992)
    [CrossRef] [PubMed]
  12. S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997)
    [CrossRef] [PubMed]
  13. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature 406, 35-36 (2000).
    [CrossRef] [PubMed]
  14. H. K. Roy, Y. Liu, R. K. Wali, Y. Kim, M. J. Goldberg, A. K. Kromine, and V. Backman, "Fourdimensional elastic light scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis," Gastroenterology 126, 1071-1081 (2004)
    [CrossRef] [PubMed]
  15. . A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, "In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry," Cancer Res. 63, 3556-3559 (2003)
    [PubMed]
  16. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML - Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995)
    [CrossRef] [PubMed]
  17. S. Bartel and A. H. Hielscher, "Monte Carlo simulation of the diffuse backscattering Mueller matrix for highly scattering media," Appl. Opt. 39, 1580-1588 (2000)
    [CrossRef]
  18. F. Jaillion and H. Saint-James, "Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media," Appl. Opt. 42, 3290-3296 (2003)
    [CrossRef]
  19. M. J. Rakovic, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, "Light backscattering polarization patterns from turbid media: theory and experiment," Appl. Opt. 38, 3399- 3408 (1999)
    [CrossRef]
  20. X. Wang and L. Wang, "Propagation of polarized light in birefringent turbid media: A Monte Carlo study," J. Biomed. Opt. 7, 279-290 (2002)
    [CrossRef] [PubMed]
  21. X. Wang, G. Yao, and L.-H. Wang, "Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose," Appl. Opt. 4, 792-801 (2002)
    [CrossRef]
  22. G. Yao and L. V. Wang, "Propagation of polarized light in turbid media: simulated animation sequences," Opt. Express 7, 198-203 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-5-198">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-5-198</a>
    [CrossRef] [PubMed]
  23. B. C. Wilson and S. L. Jacques, "Optical reflectance and transmittance of tissues - principles and applications," IEEE J. Quantum Electron. 26, 2186-2199 (1990)
    [CrossRef]
  24. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers - Influence of the size parameter," Phys. Rev. E 49, 1767-1770 (1994)
    [CrossRef]
  25. V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. Walsh, "Comparison of polarized-light propagation in biological tissue and phantoms," Opt. Lett. 24, 1044-1046 (1999)
    [CrossRef]

Appl. Opt. (7)

Arch. Dermatol. (1)

R. R. Anderson, "Polarized-light examination and photography of the skin," Arch. Dermatol. 127, 1000- 1005 (1991)
[CrossRef] [PubMed]

Cancer Res. (1)

. A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, "In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry," Cancer Res. 63, 3556-3559 (2003)
[PubMed]

Comput. Methods Programs Biomed. (1)

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML - Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995)
[CrossRef] [PubMed]

Gastroenterology (1)

H. K. Roy, Y. Liu, R. K. Wali, Y. Kim, M. J. Goldberg, A. K. Kromine, and V. Backman, "Fourdimensional elastic light scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis," Gastroenterology 126, 1071-1081 (2004)
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

B. C. Wilson and S. L. Jacques, "Optical reflectance and transmittance of tissues - principles and applications," IEEE J. Quantum Electron. 26, 2186-2199 (1990)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

Y. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromine, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron. 9, 243- 257 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999)
[CrossRef]

J. Biomed. Opt. (4)

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7, 378-387 (2002)
[CrossRef] [PubMed]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: Design and performance," J. Biomed. Opt. 7, 388-397 (2002)
[CrossRef] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

X. Wang and L. Wang, "Propagation of polarized light in birefringent turbid media: A Monte Carlo study," J. Biomed. Opt. 7, 279-290 (2002)
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000)
[CrossRef] [PubMed]

Nature (1)

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature 406, 35-36 (2000).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. E (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers - Influence of the size parameter," Phys. Rev. E 49, 1767-1770 (1994)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Comparison of the saturation of (a) differential polarization and (b) unpolarized signals with the increase of the optical thickness τ of a scattering medium. (a) As τ increases, the normalized differential polarized intensity ΔI(ΔI(τ,R=3mm)=I (τ,R)-I (τ,R)) first increases and then reaches a plateau at τ c~3. Optical depth τ is defined as τ=(µs +µa )D where D is the geometrical thickness and µs and µa are the scattering and absorption coefficients, respectively. (b) For comparison, unpolarized light signal I (τ,R)+I (τ,R) does not exhibit the saturation behavior until a much higher τ.

Fig. 2.
Fig. 2.

Effect of µs and light collection geometry on the penetration depth of differential polarization signal T. (a) The dependence of T on µs for different light collection radii R, µa =0.1 cm-1 and g=0.809. The dimensionless parameter R/ls ’ is used as the measure of the light collection geometry, where ls ’ is the transport mean free path defined as ls ′=1/(µs (1-g)). (b) The dependence of T on different R/ls ’.

Fig. 3.
Fig. 3.

Effect of µa and light collection geometry on the penetration depth of differential polarization signal T. (a) The dependence of T on µa and light collection radius R, µs =200 cm-1 and g=0.809. (b) The dependence of T for different R/ls ’ for µa =0.1 cm-1.

Fig. 4.
Fig. 4.

Effect of g on the penetration depth of polarization gating for different light collection radii R in the presence of weak and strong absorption. (a) The dependence of the penetration depth on g and the light collection radius R in case of weak absorption (µa =0.1 cm-1, µs =200 cm-1). (b) Comparison of the effect of g on the penetration depth in the presence of weak (µa =0.1 cm-1) and strong absorption (µa =10 cm-1) for R/ls ’=10.

Fig. 5.
Fig. 5.

The relationship between the radial intensity distribution and the optical depth. (a) Radial intensity distribution of co-polarized signal (P (r)), cross-polarized signal (P (r)) and differential polarization signal (ΔP(r)) as a function of r/ls ’ for g=0.809, µa =0.1 cm-1 and µs =200 cm-1. P(r) is the probability of photons emerging from a scattering medium at radial distance r per unit length. P(r)=rp(r) with p(r) the probability per unit area. (b) Depth of penetration of scattered light correlates with its radial distribution (g=0.809). The color intensity map represents the logarithm of the probability density distribution of photons as a function of penetration depth at each radial distance r.

Fig. 6.
Fig. 6.

The effect of optical properties of a scattering medium and light collection geometry on the radial intensity distribution of the differential polarization signal. (a) The effect of µs on the width of the radial intensity distribution of differential polarization signal, W (µa =0.1 cm-1 and g=0.809). (b) The effect of µa on the width of the radial intensity distribution (µs =200 cm-1, g=0.809). (c) The effect of g on the width of the radial intensity distribution (µs =200 cm-1 and µa =0.1 cm-1). (d) The relationship between light collection radius R/ls ’ and the width of the radial intensity distribution (µs =200 cm-1, µa =0.1 cm-1 and g=0.809).

Fig. 7.
Fig. 7.

The width of radial intensity distribution W has an excellent linear correlation with the penetration depth of polarization-gated signal T for different combinations of optical parameters including µs =50-200 cm-1, µa =0.01-10 cm-1, and g=0.65-0.91.

Metrics