Abstract

We present a high speed full range spectral domain optical coherence tomography system. By inserting a phase modulator into the reference arm and recording of every other spectrum with a 90° phase shift (introduced by the phase modulator) we are able to distinguish between negative and positive optical path differences with respect to the reference mirror. A modified two-frame algorithm eliminates the problem of suppressing symmetric structure terms in the final image. To demonstrate the performance of our method we present images of the anterior chamber of the human eye in vivo recorded with an A-scan rate of 10000 depth profiles per second.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254 , 1178-1181 (1991)
    [CrossRef] [PubMed]
  2. A. F. Fercher and C. K. Hitzenberger, "Optical coherence tomography," Progress in Optics 44, 215-302 (2002)
    [CrossRef]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Physics 66, 239-303 (2003)
    [CrossRef]
  4. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier Domain vs. Time Domain optical coherence tomography," Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>
    [CrossRef] [PubMed]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal to noise ratio in spectral domain compared with time domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003)
    [CrossRef] [PubMed]
  6. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>
    [CrossRef] [PubMed]
  7. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh speed spectral domain optical coherence tomography," Opt. Lett. 29, 480- 482 (2004)
    [CrossRef] [PubMed]
  8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El- Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995)
    [CrossRef]
  9. G. Häusler and M. W. Lindner, "Coherence radar and spectral radar - new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998)
    [CrossRef]
  10. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002)
    [CrossRef] [PubMed]
  11. A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, "Complex spectral interferometry OCT," Proc. SPIE. 3564, 173-178 (1999)
    [CrossRef]
  12. M. Wojtkowski , A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002)
    [CrossRef]
  13. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004)
    [CrossRef]
  14. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase shifting algorithm to achieve high speed long depth range probing by frequency domain optical coherence tomography," Opt. Lett. 28, 2201-2003 (2003)
    [CrossRef] [PubMed]
  15. R. N. Bracewell, The Fourier transform and its applications, 3rd ed. (McGraw-Hill, New York, 2000)
  16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>
    [CrossRef] [PubMed]
  17. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A.F Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>
    [CrossRef] [PubMed]
  18. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>
    [CrossRef] [PubMed]
  19. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultra high resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>
    [CrossRef] [PubMed]
  20. A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, "Coherence imaging by use of a Newton rings sampling function," Opt. Lett. 21, 1789-1791 (1996)
    [CrossRef] [PubMed]
  21. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, "En face coherence imaging using galvanometer scanner modulation," Opt. Lett. 23, 147-149 (1998)
    [CrossRef]
  22. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency domain ranging," Opt Express 12, 2977- 2998 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977</a>
    [CrossRef] [PubMed]
  23. American National Standards Institute: "American National Standard for Safe Use of Lasers," ANSI Z136.1- 2000. Orlando, Laser Institute of America, 35-49 (2000).

J. Biomed. Opt. (2)

G. Häusler and M. W. Lindner, "Coherence radar and spectral radar - new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998)
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002)
[CrossRef] [PubMed]

Opt Express (1)

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency domain ranging," Opt Express 12, 2977- 2998 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977</a>
[CrossRef] [PubMed]

Opt. Commun. (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El- Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995)
[CrossRef]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004)
[CrossRef]

Opt. Express (6)

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A.F Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultra high resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier Domain vs. Time Domain optical coherence tomography," Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>
[CrossRef] [PubMed]

Opt. Lett. (6)

Proc. SPIE. (1)

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, "Complex spectral interferometry OCT," Proc. SPIE. 3564, 173-178 (1999)
[CrossRef]

Progress in Optics (1)

A. F. Fercher and C. K. Hitzenberger, "Optical coherence tomography," Progress in Optics 44, 215-302 (2002)
[CrossRef]

Rep. Prog. Physics (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Physics 66, 239-303 (2003)
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254 , 1178-1181 (1991)
[CrossRef] [PubMed]

Other (2)

R. N. Bracewell, The Fourier transform and its applications, 3rd ed. (McGraw-Hill, New York, 2000)

American National Standards Institute: "American National Standard for Safe Use of Lasers," ANSI Z136.1- 2000. Orlando, Laser Institute of America, 35-49 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

High speed complex spectral domain optical coherence tomography system. SLD, superluminescent diode; FC, fiber coupler; Pol, polarizer; NPBS, nonpolarizing beamsplitter; VDF, variable density filter; PM, electro optic phase modulator; M, mirror; DC, dispersion compensation; SC, galvo scanner; L, lens; S, sample; HWP, half wave plate; PMF, polarization maintaining fiber; DG, diffraction grating; LSC, linescan camera.

Fig. 2.
Fig. 2.

A-lines obtained from single reflecting surface (mirror attenuated by neutral density filter). Abscissa: distance (mm), ordinate: signal amplitude (linear scale, arbitrary units, normalized to amplitude of structure peak of signal S1 in (b)). (a) Inverse Fourier transform of real-valued spectrum I(ν); (b) signals S 1 (black) obtained from complex spectrum and S 2 (red) obtained from complex conjugate spectrum (enlarged central section of depth profile); (c) difference signal ΔS=S 1-S 2; (d) final signal ΔS + (corresponds to final result of original two-frame algorithm).

Fig. 3.
Fig. 3.

Images of anterior chamber of human eye in vivo. Size of imaged area: 5.9 mm (horizontal, optical distance)×8 mm (vertical); each image consists of 800 A-lines. Logarithmic intensity scale. (a) Image obtained from inverse Fourier transform of real-valued spectrum I(ν), mirror terms corrupt the image. (b) Image corresponding to signal ΔS + (original two frame algorithm); mirror terms are removed, shadow like artifacts remain. (c) Symmetric structure terms recovered by new algorithm. (d) Final image (gated sum of (b) and (c)) obtained by enhanced two-frame algorithm.

Fig. 4.
Fig. 4.

Effect of phase error. A-lines obtained from single reflecting surface (cf. fig. 2). Abscissa: distance (mm), ordinate: signal amplitude (linear scale, arbitrary units, normalized to amplitude of structure peak of signal S1 in (a)). (a) Signals S1 (black) obtained from complex spectrum and S2 (red) obtained from complex conjugate spectrum; (b) difference signal ΔS=S 1-S 2; (c) final signal ΔS + (corresponds to final result of original two-frame algorithm).

Fig. 5.
Fig. 5.

Image of human anterior chamber showing motion artifacts. Size of imaged area: 5.9 mm (horizontal, optical distance)×8 mm (vertical); each image consists of 800 A-lines. Logarithmic intensity scale. (a) Image obtained from inverse Fourier transform of real-valued spectrum I(ν). (b) Image after applying two-frame algorithm.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

FT 1 { I ( ν ) } = Γ rr ( τ ) + n Γ nn ( τ ) + n m { Γ [ τ + ( τ m τ n ) ] + Γ [ τ ( τ m τ n ) ] }
n { Γ [ τ + ( τ r τ n ) ] + Γ [ τ ( τ r τ n ) ] } ,
I ˜ ( ν ) = I ( ν ) + iI ( ν , Δ ϕ = 90 ° ) ,
S ˜ 1 ( τ ) = FT 1 { I ˜ ( ν ) } = DC + iDC + AC + iAC + 2 n Γ [ τ + ( τ r τ n ) ] ,
S ˜ 2 ( τ ) = FT 1 { I ˜ * ( ν ) } = DC iDC + AC iAC + 2 n Γ [ τ ( τ r τ n ) ] ,
S 1 ( τ ) = S ˜ 1 ( τ ) = 2 DC + 2 AC + 2 n Γ [ τ + ( τ r τ n ) ] ,
S 2 ( τ ) = S ˜ 2 ( τ ) = 2 DC + 2 AC + 2 n Γ [ τ ( τ r τ n ) ] .
Δ S ( τ ) = S 1 ( τ ) S 2 ( τ ) = 2 n Γ [ τ + ( τ r τ n ) ] 2 n Γ [ τ ( τ r τ n ) ] ,
Δ S + ( τ ) = Φ [ Δ S ( τ ) ] Δ S ( τ ) .
FT 1 { I ( ν ) } M 1 ( τ ) = n Γ [ τ + ( τ r τ n ) ] + n Γ [ τ ( τ r τ n ) ] ,
FT 1 { I * ( ν , Δ ϕ = 90 ° ) } M 2 ( τ ) = n Γ [ τ + ( τ r τ n ) ] n Γ [ τ ( τ r τ n ) ] ,
Δ M ( τ ) = M 1 ( τ ) M 2 ( τ )
M 1 , sym ( τ ) = 2 Γ [ τ + ( τ r τ 1 ) ] + Γ [ τ ( τ r τ 1 ) ] ,
M 2 , sym ( τ ) = 0 ,
F ( τ ) = Φ [ Δ M ( τ ) ] Δ S + ( τ ) + Φ [ Δ M ( τ ) ] S 1 ( τ ) ,

Metrics