Abstract

Scattering is often considered as the main cause of the huge attenuation difference between optical fibers and integrated optical waveguides. In order to evaluate the magnitude of scattering in those waveguides, an optical low coherence reflectometry experiment has been conducted, showing that the amount of backscattered light is not enough to explain that difference in losses.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Adar, M.R. Serbin, V. Mizrahi. �??Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,�?? J. Lightwave Technol.. 12, 1369 �?? 1372 (1994).
    [CrossRef]
  2. F. Ladouceur. �??Roughness, inhomogeneity, and integrated optics,�?? J. Lightwave Technol. 15, 1020 �?? 1025 (1997).
    [CrossRef]
  3. T. Baba, Y. Kokubun, �??Scattering loss of antiresonant reflecting optical waveguides,�?? J. Lightwave Technol. 9, 590�??597 (1991).
    [CrossRef]
  4. I. Garcés, F. Villuendas, J. Vallés, C. Domínguez, M. Moreno. �??Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,�?? J. Lightwave Technol. 14, 798�??805 (1996).
    [CrossRef]
  5. I. Garcés, J. Subías, R. Alonso. �??Analysis of the modal solutions of rib antiresonant reflecting optical waveguides,�?? J. Lightwave Technol. 17, 1566-1574 (1999).
    [CrossRef]
  6. K. Takada, S. Mitachi. �??Measurement of depolarization ratio and ultimate limit of polarization crosstalk in silica-based waveguides by using a POLCR,�?? J. Lightwave Technol. 16, 639-645 (1998).
    [CrossRef]
  7. E.G. Neumann. Single-Mode Fibers. Fundamentals. (Springer Verlag, 1988), Chap. 13.4.
  8. R. C. Youngquist, S. Carr, and D. E. N. Davies, �??Optical coherence- domain reflectometry: A new optical evaluation technique,�?? Opt. Lett. 12, 158-160 (1987).
    [CrossRef] [PubMed]
  9. K. Takada, I. Yokohama, K. Chida, and J. Noda, �??New measurement system for fault location in optical waveguide devices based on an interferometric technique,�?? Appl. Opt. 26, 1603-1606 (1987).
    [CrossRef] [PubMed]
  10. M. A. Duguay, Y. Kokubun, and T. L. Koch,. �??Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,�?? Appl. Phys. Lett. 49, 13�??15 (1986).
    [CrossRef]
  11. W. J. Wiscombe, G.W. Grams. �??The backscattered fraction in two-stream approximations,�?? J. Atmospheric Sciences 33, 2440-2451 (1976).
    [CrossRef]
  12. M. Nakazawa. �??Rayleigh backscattering theory for single-mode optical fibers,�?? Opt. Soc. Am. 73, 1175- 1179 (1983).
    [CrossRef]
  13. F. P. Kapron, R.D. Maurer, M. P. Teter �??Theory of backscattering effects in waveguides,�?? Appl. Opt. 11, 1352-1356 (1972).
    [CrossRef] [PubMed]
  14. A. S. Sudbø, �??Why Are Accurate Computations of Mode Fields in Rectangular Dielectric Waveguides Difficult?,�?? J. Lightwave Technol. 10, 418�??419 (1992).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. A. Duguay, Y. Kokubun, and T. L. Koch,. �??Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,�?? Appl. Phys. Lett. 49, 13�??15 (1986).
[CrossRef]

J. Atmospheric Sciences

W. J. Wiscombe, G.W. Grams. �??The backscattered fraction in two-stream approximations,�?? J. Atmospheric Sciences 33, 2440-2451 (1976).
[CrossRef]

J. Lightwave Technol.

R. Adar, M.R. Serbin, V. Mizrahi. �??Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,�?? J. Lightwave Technol.. 12, 1369 �?? 1372 (1994).
[CrossRef]

F. Ladouceur. �??Roughness, inhomogeneity, and integrated optics,�?? J. Lightwave Technol. 15, 1020 �?? 1025 (1997).
[CrossRef]

T. Baba, Y. Kokubun, �??Scattering loss of antiresonant reflecting optical waveguides,�?? J. Lightwave Technol. 9, 590�??597 (1991).
[CrossRef]

I. Garcés, F. Villuendas, J. Vallés, C. Domínguez, M. Moreno. �??Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,�?? J. Lightwave Technol. 14, 798�??805 (1996).
[CrossRef]

I. Garcés, J. Subías, R. Alonso. �??Analysis of the modal solutions of rib antiresonant reflecting optical waveguides,�?? J. Lightwave Technol. 17, 1566-1574 (1999).
[CrossRef]

K. Takada, S. Mitachi. �??Measurement of depolarization ratio and ultimate limit of polarization crosstalk in silica-based waveguides by using a POLCR,�?? J. Lightwave Technol. 16, 639-645 (1998).
[CrossRef]

A. S. Sudbø, �??Why Are Accurate Computations of Mode Fields in Rectangular Dielectric Waveguides Difficult?,�?? J. Lightwave Technol. 10, 418�??419 (1992).
[CrossRef]

Opt. Lett.

Opt. Soc. Am.

M. Nakazawa. �??Rayleigh backscattering theory for single-mode optical fibers,�?? Opt. Soc. Am. 73, 1175- 1179 (1983).
[CrossRef]

Other

E.G. Neumann. Single-Mode Fibers. Fundamentals. (Springer Verlag, 1988), Chap. 13.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Basic scheme of the OLCR setup based on Michelson interferometer

Fig. 2.
Fig. 2.

Final scheme of the OLCR setup.

Fig. 3.
Fig. 3.

OLCR experimental setup (light ray has been simulated).

Fig. 4.
Fig. 4.

Section of the ARROW waveguides fabricated.

Fig. 5.
Fig. 5.

Reflectivity of the input fiber and the initial section of an 8 µm wide waveguide

Fig. 6.
Fig. 6.

Reflectivity of the end section of a 10 µm wide waveguide

Fig. 7.
Fig. 7.

Images of the fabricated ARROW waveguides without the upper cladding layer.

Fig. 8.
Fig. 8.

Measured dependence on wavelength of the attenuation of ARROW waveguides

Tables (1)

Tables Icon

Table 1. Summary of the reflectivity measurements in optical fibers and integrated waveguides

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d P R ( z ) = K · P ( z ) · α S · dz
P R ( z ) = ln 10 10 · K · P ( z ) · α SdB · W
I = I 1 + I 2 + 2 I 1 I 2 cos ω 0 τ
I = I 1 + I 2 + 2 I 1 I 2 cos 2 π λ 0 Δ x
L C λ 0 2 Δ λ
R ( z ) = 10 log ( P R ( z ) P ( z ) ) = 10 log [ 0.23 · K · α SdB ( z ) · W ]
R w a v e g u i d e = 10 log [ 0.23 d B 1 10 3 30 d B / m 4.5 10 5 m ] = 65 d B
R f i b e r = 10 log [ 0.23 d B 1 10 3 3 10 3 d B / m 4.5 10 5 m ] = 105 d B

Metrics