Abstract

We generate correlated photon pairs at 839 nm and 1392 nm from a single-mode photonic crystal fiber pumped in the normal dispersion regime. This compact, bright, tunable, single-mode source of pair-photons will have wide application in quantum communications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
    [Crossref]
  2. H. Weinfurter, “Quantum Communications, “Quantum communication with entangled photons,” Adv. At. Mol. Opt. Phys.,  42, 489 (2000).
    [Crossref]
  3. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, “New High Intensity Source of Entangled Photon Pairs,” Phys. Rev. Lett 75, 4337 (1995).
    [Crossref] [PubMed]
  4. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High Efficiency entangled pair collection in type II parametric fluorescence,” Phys. Rev. Lett. 85, 290–293 (2000).
    [Crossref] [PubMed]
  5. G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibres,” Appl. Phys. Lett. 75, 2356 (1999).
    [Crossref]
  6. S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
    [Crossref]
  7. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fibre photon pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–5 (2002).
    [Crossref]
  8. X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3745 (2004).
    [Crossref] [PubMed]
  9. J. E. Sharping, J. Chen, X. Li, and P. Kumar, “Quantum Correlated twin photons from microstructured fibre,” Opt. Express 12, 3086–3094 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086
    [Crossref] [PubMed]
  10. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299
    [Crossref] [PubMed]
  11. W. J. Wadsworth, P. St.J. Russell, J. G. Rarity, J. Duligall, and J. R. Fulconis “Single-mode source of correlated photon pairs from photonic crystal fibre” International Quantum Electronics Conference, CLEO/IQEC San Francisco, paper IPDA7 (2004)
  12. G. P. Agrawal, Nonlinear fiber optics (Academic, 1995).
  13. L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclass. Opt.,  3, 346–352 (2001).
    [Crossref]
  14. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell “White-light supercontinuum with 60 ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
    [Crossref]
  15. T. A. Birks, J. C. Knight, and P. St.J. Russell, “Endlessly single-mode photonic crystal fibre,” Opt. Lett. 22, 961–963 (1997).
    [Crossref] [PubMed]
  16. Nd:YLF laser kindly donated by Lightwave Electronics Inc..
  17. P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P. D. Townsend, “Photon Counting using Germanium Avalanche Diodes,” App. Opt. 33, 6895 (1994).
    [Crossref]
  18. I. Prochazka, K. Hamal, and B. Sopko, “Recent achievements in single photon detectors and their applications,” J. Modern Opt. 51, 1289–1313 (2004).
  19. R. Tang, P. L. Voss, J. Lasri, P. Devgan, and P. Kumar, Noise-figure limit of fiber optical parametric amplifiers and wavelength converters:,” arXiv-quant-ph/0410214 (Oct 2004).
  20. X. Li, P. L. Voss, and P. Kumar, “Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,” arXiv:quant-ph/0402191 (Feb 2004).
  21. H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s ineqequality using spontaneous four-wave mixing in fiber loop,” arXiv-quant-ph/0408032 (Aug 2004).

2004 (4)

2002 (2)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fibre photon pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–5 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

2001 (3)

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclass. Opt.,  3, 346–352 (2001).
[Crossref]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell “White-light supercontinuum with 60 ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
[Crossref]

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

2000 (2)

H. Weinfurter, “Quantum Communications, “Quantum communication with entangled photons,” Adv. At. Mol. Opt. Phys.,  42, 489 (2000).
[Crossref]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High Efficiency entangled pair collection in type II parametric fluorescence,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

1999 (1)

G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibres,” Appl. Phys. Lett. 75, 2356 (1999).
[Crossref]

1997 (1)

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, “New High Intensity Source of Entangled Photon Pairs,” Phys. Rev. Lett 75, 4337 (1995).
[Crossref] [PubMed]

1994 (1)

P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P. D. Townsend, “Photon Counting using Germanium Avalanche Diodes,” App. Opt. 33, 6895 (1994).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics (Academic, 1995).

Baldi, P.

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Biancalana, F.

Birks, T. A.

Bonfrate, G.

G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibres,” Appl. Phys. Lett. 75, 2356 (1999).
[Crossref]

Chau, A. H. L.

Chen, J.

Coen, S.

de Micheli, M.

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

de Riedmatten, H.

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Devgan, P.

R. Tang, P. L. Voss, J. Lasri, P. Devgan, and P. Kumar, Noise-figure limit of fiber optical parametric amplifiers and wavelength converters:,” arXiv-quant-ph/0410214 (Oct 2004).

Duligall, J.

W. J. Wadsworth, P. St.J. Russell, J. G. Rarity, J. Duligall, and J. R. Fulconis “Single-mode source of correlated photon pairs from photonic crystal fibre” International Quantum Electronics Conference, CLEO/IQEC San Francisco, paper IPDA7 (2004)

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fibre photon pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–5 (2002).
[Crossref]

Friberg, S. R.

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclass. Opt.,  3, 346–352 (2001).
[Crossref]

Fulconis, J. R.

W. J. Wadsworth, P. St.J. Russell, J. G. Rarity, J. Duligall, and J. R. Fulconis “Single-mode source of correlated photon pairs from photonic crystal fibre” International Quantum Electronics Conference, CLEO/IQEC San Francisco, paper IPDA7 (2004)

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Hamal, K.

I. Prochazka, K. Hamal, and B. Sopko, “Recent achievements in single photon detectors and their applications,” J. Modern Opt. 51, 1289–1313 (2004).

Harvey, J. D.

Hong, C. K.

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclass. Opt.,  3, 346–352 (2001).
[Crossref]

Inoue, K.

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s ineqequality using spontaneous four-wave mixing in fiber loop,” arXiv-quant-ph/0408032 (Aug 2004).

Joly, N.

Kazanski, P.

G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibres,” Appl. Phys. Lett. 75, 2356 (1999).
[Crossref]

Knight, D.

P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P. D. Townsend, “Photon Counting using Germanium Avalanche Diodes,” App. Opt. 33, 6895 (1994).
[Crossref]

Knight, J. C.

Kumar, P.

J. E. Sharping, J. Chen, X. Li, and P. Kumar, “Quantum Correlated twin photons from microstructured fibre,” Opt. Express 12, 3086–3094 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086
[Crossref] [PubMed]

X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3745 (2004).
[Crossref] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fibre photon pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–5 (2002).
[Crossref]

X. Li, P. L. Voss, and P. Kumar, “Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,” arXiv:quant-ph/0402191 (Feb 2004).

R. Tang, P. L. Voss, J. Lasri, P. Devgan, and P. Kumar, Noise-figure limit of fiber optical parametric amplifiers and wavelength converters:,” arXiv-quant-ph/0410214 (Oct 2004).

Kurtsiefer, C.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High Efficiency entangled pair collection in type II parametric fluorescence,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, “New High Intensity Source of Entangled Photon Pairs,” Phys. Rev. Lett 75, 4337 (1995).
[Crossref] [PubMed]

Lasri, J.

R. Tang, P. L. Voss, J. Lasri, P. Devgan, and P. Kumar, Noise-figure limit of fiber optical parametric amplifiers and wavelength converters:,” arXiv-quant-ph/0410214 (Oct 2004).

Leonhardt, R.

Li, X.

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, “New High Intensity Source of Entangled Photon Pairs,” Phys. Rev. Lett 75, 4337 (1995).
[Crossref] [PubMed]

Oberparleiter, M.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High Efficiency entangled pair collection in type II parametric fluorescence,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Ostrowski, D. B.

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Owens, P. C. M.

P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P. D. Townsend, “Photon Counting using Germanium Avalanche Diodes,” App. Opt. 33, 6895 (1994).
[Crossref]

Prochazka, I.

I. Prochazka, K. Hamal, and B. Sopko, “Recent achievements in single photon detectors and their applications,” J. Modern Opt. 51, 1289–1313 (2004).

Pruneiri, V.

G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibres,” Appl. Phys. Lett. 75, 2356 (1999).
[Crossref]

Rarity, J. G.

G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibres,” Appl. Phys. Lett. 75, 2356 (1999).
[Crossref]

P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P. D. Townsend, “Photon Counting using Germanium Avalanche Diodes,” App. Opt. 33, 6895 (1994).
[Crossref]

W. J. Wadsworth, P. St.J. Russell, J. G. Rarity, J. Duligall, and J. R. Fulconis “Single-mode source of correlated photon pairs from photonic crystal fibre” International Quantum Electronics Conference, CLEO/IQEC San Francisco, paper IPDA7 (2004)

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

Russell, P. St. J.

Russell, P. St.J.

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, “New High Intensity Source of Entangled Photon Pairs,” Phys. Rev. Lett 75, 4337 (1995).
[Crossref] [PubMed]

Sharping, J. E.

Shih, Y.H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, “New High Intensity Source of Entangled Photon Pairs,” Phys. Rev. Lett 75, 4337 (1995).
[Crossref] [PubMed]

Sopko, B.

I. Prochazka, K. Hamal, and B. Sopko, “Recent achievements in single photon detectors and their applications,” J. Modern Opt. 51, 1289–1313 (2004).

Takesue, H.

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s ineqequality using spontaneous four-wave mixing in fiber loop,” arXiv-quant-ph/0408032 (Aug 2004).

Tang, R.

R. Tang, P. L. Voss, J. Lasri, P. Devgan, and P. Kumar, Noise-figure limit of fiber optical parametric amplifiers and wavelength converters:,” arXiv-quant-ph/0410214 (Oct 2004).

Tanzilli, S.

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Tapster, P. R.

G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibres,” Appl. Phys. Lett. 75, 2356 (1999).
[Crossref]

P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P. D. Townsend, “Photon Counting using Germanium Avalanche Diodes,” App. Opt. 33, 6895 (1994).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Townsend, P. D.

P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P. D. Townsend, “Photon Counting using Germanium Avalanche Diodes,” App. Opt. 33, 6895 (1994).
[Crossref]

Voss, P.

Voss, P. L.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fibre photon pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–5 (2002).
[Crossref]

R. Tang, P. L. Voss, J. Lasri, P. Devgan, and P. Kumar, Noise-figure limit of fiber optical parametric amplifiers and wavelength converters:,” arXiv-quant-ph/0410214 (Oct 2004).

X. Li, P. L. Voss, and P. Kumar, “Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,” arXiv:quant-ph/0402191 (Feb 2004).

Wadsworth, W. J.

Wang, L. J.

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclass. Opt.,  3, 346–352 (2001).
[Crossref]

Weinfurter, H.

H. Weinfurter, “Quantum Communications, “Quantum communication with entangled photons,” Adv. At. Mol. Opt. Phys.,  42, 489 (2000).
[Crossref]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High Efficiency entangled pair collection in type II parametric fluorescence,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, “New High Intensity Source of Entangled Photon Pairs,” Phys. Rev. Lett 75, 4337 (1995).
[Crossref] [PubMed]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, “New High Intensity Source of Entangled Photon Pairs,” Phys. Rev. Lett 75, 4337 (1995).
[Crossref] [PubMed]

Adv. At. Mol. Opt. Phys. (1)

H. Weinfurter, “Quantum Communications, “Quantum communication with entangled photons,” Adv. At. Mol. Opt. Phys.,  42, 489 (2000).
[Crossref]

App. Opt. (1)

P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P. D. Townsend, “Photon Counting using Germanium Avalanche Diodes,” App. Opt. 33, 6895 (1994).
[Crossref]

Appl. Phys. Lett. (1)

G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster, and J. G. Rarity, “Parametric fluorescence in periodically poled silica fibres,” Appl. Phys. Lett. 75, 2356 (1999).
[Crossref]

Electron. Lett. (1)

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fibre photon pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–5 (2002).
[Crossref]

J. Modern Opt. (1)

I. Prochazka, K. Hamal, and B. Sopko, “Recent achievements in single photon detectors and their applications,” J. Modern Opt. 51, 1289–1313 (2004).

J. Opt. B: Quantum and Semiclass. Opt. (1)

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclass. Opt.,  3, 346–352 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, “New High Intensity Source of Entangled Photon Pairs,” Phys. Rev. Lett 75, 4337 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High Efficiency entangled pair collection in type II parametric fluorescence,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

Other (6)

Nd:YLF laser kindly donated by Lightwave Electronics Inc..

R. Tang, P. L. Voss, J. Lasri, P. Devgan, and P. Kumar, Noise-figure limit of fiber optical parametric amplifiers and wavelength converters:,” arXiv-quant-ph/0410214 (Oct 2004).

X. Li, P. L. Voss, and P. Kumar, “Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,” arXiv:quant-ph/0402191 (Feb 2004).

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s ineqequality using spontaneous four-wave mixing in fiber loop,” arXiv-quant-ph/0408032 (Aug 2004).

W. J. Wadsworth, P. St.J. Russell, J. G. Rarity, J. Duligall, and J. R. Fulconis “Single-mode source of correlated photon pairs from photonic crystal fibre” International Quantum Electronics Conference, CLEO/IQEC San Francisco, paper IPDA7 (2004)

G. P. Agrawal, Nonlinear fiber optics (Academic, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Nonlinear phasematching diagram for the process 2ωp→ωsi, calculated from the measured dispersion curve of a certain PCF for input powers Pp =14 W (blue curve); Pp =140 W (red curve); Pp =1400 W (green curve).

Fig. 2.
Fig. 2.

Calculated frequency offset and bandwidth for pair photons generated by MI (pump offset λ pump-λ 0=1.3 nm) and FWM (λ pump-λ 0=-11.7 nm) for a given PCF at Pp =10 W. The Raman gain shape is also shown (from [11]). Each gain curve is normalized individually.

Fig. 3.
Fig. 3.

Electron microscope image of the PCF. Λ=2.97 µm, d/Λ=0.39, λ0=1065 nm

Fig. 4.
Fig. 4.

Output spectrum of the PCF when pumped with low-power Q-switched laser pulses at 1047 nm. The OPO wavelengths at 834/1404 nm are clearly visible.

Fig. 5.
Fig. 5.

Optical layout. Laser, 1047nm Nd:YLF laser, 250mW CW; WP, halfwave plate; PBS, polarizing beamsplitter cube; P1, P2, SF11 dispersing prisms; O1, ×20 microscope objectives; PCF, 1.5 m, 3 m or 6 m of modified dispersion PCF; M1, protected silver mirror (R>95%); M2, near IR dielectric mirror (R>98%); F1, 850 nm interference filter, bandwidth 70 nm, T=75%; F2, long wave pass filter, cut-on wavelength 1220 nm; O2, ×10 microscope objectives; SMF, fibre patchcords (SMF28); D Si, Silicon single photon detector; D Ge, cooled Germanium single photon detector.

Fig. 6.
Fig. 6.

Time interval histogram showing the coincident photon detection peak

Fig. 7.
Fig. 7.

Germanium detector count rate as a function of wavelength. The low wavelength cut-off is from the 1200 nm pump blocking filter and the long wavelength cut-off is due partly to dropping Raman signal but also due to falling detector efficiency. The red curve shows a finely sampled experiment around the pair photon peak at 1392 nm.

Tables (1)

Tables Icon

Table 1. Summary of results

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

k i + k s 2 k p + 2 γ P p = 0
Δ k + 2 γ P p = 0
ω i + ω s = 2 ω p
γ = 2 π n 2 λ A eff
A s z = + i γ ( 2 P p A s + P p A i * e i ( 2 γ P p Δ k ) z )
A i * z = i γ ( 2 P p A i * + P p A s e i ( 2 γ P p Δ k ) z )
B s z = + i γ P p B i * e i ( 2 γ P p + Δ k ) z
B i * z = + i γ P p B s e i ( 2 γ P p + Δ k ) z
G = γ P p z 2 .
r γ P p z 2 Δ ν second .
N Ge = η Ge η opt r + B Ge
N Si = η Si η opt r + B Si
C = η Ge η Si η opt η opt r + C b
C b = N Si N Ge t
C C b N Si = η Ge η opt

Metrics