Abstract

We generate correlated photon pairs at 839 nm and 1392 nm from a single-mode photonic crystal fiber pumped in the normal dispersion regime. This compact, bright, tunable, single-mode source of pair-photons will have wide application in quantum communications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, �??Quantum Cryptography,�?? Rev. Mod. Phys. 74, 145 (2002).
    [CrossRef]
  2. H. Weinfurter, �??Quantum Communications, �??Quantum communication with entangled photons,�?? Adv. At. Mol. Opt. Phys., 42, 489 (2000).
    [CrossRef]
  3. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, �??New High Intensity Source of Entangled Photon Pairs,�?? Phys. Rev. Lett 75, 4337 (1995).
    [CrossRef] [PubMed]
  4. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, �??High Efficiency entangled pair collection in type II parametric fluorescence,�?? Phys. Rev. Lett. 85, 290�??293 (2000).
    [CrossRef] [PubMed]
  5. G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster and J. G.Rarity, �??Parametric fluorescence in periodically poled silica fibres,�?? Appl. Phys. Lett. 75, 2356 (1999).
    [CrossRef]
  6. S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, N. Gisin, �??Highly efficient photon-pair source using periodically poled lithium niobate waveguide,�?? Electron. Lett. 37, 26-28 (2001).
    [CrossRef]
  7. M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, �??All-fibre photon pair source for quantum communications,�?? IEEE Photon. Technol. Lett. 14, 983-5 (2002).
    [CrossRef]
  8. X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,�?? Opt. Express 12, 3737-3745 (2004).
    [CrossRef] [PubMed]
  9. J. E. Sharping, J. Chen, X. Li, P. Kumar, �??Quantum Correlated twin photons from microstructured fibre,�?? Opt. Express 12, 3086-3094 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086
    [CrossRef] [PubMed]
  10. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, P. St. J. Russell , �??Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,�?? Opt. Express 12, 299-309 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299<a/>
    [CrossRef] [PubMed]
  11. W. J.Wadsworth, P. St.J. Russell, J. G. Rarity, J. Duligall, J. R. Fulconis: �??Single-mode source of correlated photon pairs from photonic crystal fibre�?? International Quantum Electronics Conference, CLEO/IQEC San Francisco, paper IPDA7 (2004)
  12. G. P. Agrawal, Nonlinear fiber optics (Academic, 1995).
  13. L. J. Wang, C. K. Hong, and S. R. Friberg, �??Generation of correlated photons via four-wave mixing in optical fibres,�?? J. Opt. B: Quantum and Semiclass. Opt., 3, 346-352 (2001).
    [CrossRef]
  14. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St.J. Russell: �??White-light supercontinuum with 60 ps pump pulses in a photonic crystal fiber,�?? Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]
  15. T. A. Birks, J. C. Knight, and P. St.J. Russell, �??Endlessly single-mode photonic crystal fibre,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  16. Nd:YLF laser kindly donated by Lightwave Electronics Inc..
  17. P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight and P. D. Townsend, �??Photon Counting using Germanium Avalanche Diodes,�?? App. Opt. 33, 6895 (1994
    [CrossRef]
  18. I. Prochazka, K. Hamal and B. Sopko, �??Recent achievements in single photon detectors and their applications,�?? J. Modern Opt. 51, 1289�??1313 (2004).
  19. R. Tang, P. L. Voss, J. Lasri, P. Devgan and P. Kumar, Noise-figure limit of fiber optical parametric amplifiers and wavelength converters: ,�?? arXiv-quant-ph/0410214 (Oct 2004).
  20. X. Li, P. L. Voss, & P. Kumar, �??Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,�?? arXiv:quant-ph/0402191 (Feb 2004).
  21. H. Takesue and K. Inoue, �??Generation of polarization entangled photon pairs and violation of Bell�??s ineqequality using spontaneous four-wave mixing in fiber loop,�?? arXiv-quant-ph/0408032 (Aug 2004).

Adv. At. Mol. Opt. Phys. (1)

H. Weinfurter, �??Quantum Communications, �??Quantum communication with entangled photons,�?? Adv. At. Mol. Opt. Phys., 42, 489 (2000).
[CrossRef]

App. Opt. (1)

P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight and P. D. Townsend, �??Photon Counting using Germanium Avalanche Diodes,�?? App. Opt. 33, 6895 (1994
[CrossRef]

Appl. Phys. Lett. (1)

G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster and J. G.Rarity, �??Parametric fluorescence in periodically poled silica fibres,�?? Appl. Phys. Lett. 75, 2356 (1999).
[CrossRef]

Electron. Lett. (1)

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, N. Gisin, �??Highly efficient photon-pair source using periodically poled lithium niobate waveguide,�?? Electron. Lett. 37, 26-28 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, �??All-fibre photon pair source for quantum communications,�?? IEEE Photon. Technol. Lett. 14, 983-5 (2002).
[CrossRef]

International Quantum Electronics Confer (1)

W. J.Wadsworth, P. St.J. Russell, J. G. Rarity, J. Duligall, J. R. Fulconis: �??Single-mode source of correlated photon pairs from photonic crystal fibre�?? International Quantum Electronics Conference, CLEO/IQEC San Francisco, paper IPDA7 (2004)

J. Modern Opt. (1)

I. Prochazka, K. Hamal and B. Sopko, �??Recent achievements in single photon detectors and their applications,�?? J. Modern Opt. 51, 1289�??1313 (2004).

J. Opt. B: Quantum and Semicla. Opt. (1)

L. J. Wang, C. K. Hong, and S. R. Friberg, �??Generation of correlated photons via four-wave mixing in optical fibres,�?? J. Opt. B: Quantum and Semiclass. Opt., 3, 346-352 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, �??New High Intensity Source of Entangled Photon Pairs,�?? Phys. Rev. Lett 75, 4337 (1995).
[CrossRef] [PubMed]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, �??High Efficiency entangled pair collection in type II parametric fluorescence,�?? Phys. Rev. Lett. 85, 290�??293 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, �??Quantum Cryptography,�?? Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Other (5)

G. P. Agrawal, Nonlinear fiber optics (Academic, 1995).

Nd:YLF laser kindly donated by Lightwave Electronics Inc..

R. Tang, P. L. Voss, J. Lasri, P. Devgan and P. Kumar, Noise-figure limit of fiber optical parametric amplifiers and wavelength converters: ,�?? arXiv-quant-ph/0410214 (Oct 2004).

X. Li, P. L. Voss, & P. Kumar, �??Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,�?? arXiv:quant-ph/0402191 (Feb 2004).

H. Takesue and K. Inoue, �??Generation of polarization entangled photon pairs and violation of Bell�??s ineqequality using spontaneous four-wave mixing in fiber loop,�?? arXiv-quant-ph/0408032 (Aug 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Nonlinear phasematching diagram for the process 2ωp→ωsi, calculated from the measured dispersion curve of a certain PCF for input powers Pp =14 W (blue curve); Pp =140 W (red curve); Pp =1400 W (green curve).

Fig. 2.
Fig. 2.

Calculated frequency offset and bandwidth for pair photons generated by MI (pump offset λ pump-λ 0=1.3 nm) and FWM (λ pump-λ 0=-11.7 nm) for a given PCF at Pp =10 W. The Raman gain shape is also shown (from [11]). Each gain curve is normalized individually.

Fig. 3.
Fig. 3.

Electron microscope image of the PCF. Λ=2.97 µm, d/Λ=0.39, λ0=1065 nm

Fig. 4.
Fig. 4.

Output spectrum of the PCF when pumped with low-power Q-switched laser pulses at 1047 nm. The OPO wavelengths at 834/1404 nm are clearly visible.

Fig. 5.
Fig. 5.

Optical layout. Laser, 1047nm Nd:YLF laser, 250mW CW; WP, halfwave plate; PBS, polarizing beamsplitter cube; P1, P2, SF11 dispersing prisms; O1, ×20 microscope objectives; PCF, 1.5 m, 3 m or 6 m of modified dispersion PCF; M1, protected silver mirror (R>95%); M2, near IR dielectric mirror (R>98%); F1, 850 nm interference filter, bandwidth 70 nm, T=75%; F2, long wave pass filter, cut-on wavelength 1220 nm; O2, ×10 microscope objectives; SMF, fibre patchcords (SMF28); D Si, Silicon single photon detector; D Ge, cooled Germanium single photon detector.

Fig. 6.
Fig. 6.

Time interval histogram showing the coincident photon detection peak

Fig. 7.
Fig. 7.

Germanium detector count rate as a function of wavelength. The low wavelength cut-off is from the 1200 nm pump blocking filter and the long wavelength cut-off is due partly to dropping Raman signal but also due to falling detector efficiency. The red curve shows a finely sampled experiment around the pair photon peak at 1392 nm.

Tables (1)

Tables Icon

Table 1. Summary of results

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

k i + k s 2 k p + 2 γ P p = 0
Δ k + 2 γ P p = 0
ω i + ω s = 2 ω p
γ = 2 π n 2 λ A eff
A s z = + i γ ( 2 P p A s + P p A i * e i ( 2 γ P p Δ k ) z )
A i * z = i γ ( 2 P p A i * + P p A s e i ( 2 γ P p Δ k ) z )
B s z = + i γ P p B i * e i ( 2 γ P p + Δ k ) z
B i * z = + i γ P p B s e i ( 2 γ P p + Δ k ) z
G = γ P p z 2 .
r γ P p z 2 Δ ν second .
N Ge = η Ge η opt r + B Ge
N Si = η Si η opt r + B Si
C = η Ge η Si η opt η opt r + C b
C b = N Si N Ge t
C C b N Si = η Ge η opt

Metrics