Abstract

We observe for the first time net continuous wave optical gain in a low loss silicon-on-insulator waveguide based on stimulated Raman scattering. We show that nonlinear optical loss due to two-photon absorption induced free carrier absorption can be significantly reduced by introducing a reverse biased p-i-n diode in the waveguide. For a 4.8 cm long waveguide with an effective core area of ~1.6 µm2, we obtain a net CW Raman gain of >3dB with a pump power of ~700mW inside the waveguide.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, �??Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,�?? Appl. Phys. Lett. 85, 2196-2198 (2004)
    [CrossRef]
  2. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, �??Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,�?? Opt. Express 12, 4261-4268 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261</a>
    [CrossRef] [PubMed]
  3. Q. Xu, V. R. Almeida, and M. Lipson, �??Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,�?? Opt. Express 12, 4437-4442 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-443">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-443</a>
    [CrossRef] [PubMed]
  4. T. K. Liang and H. K. Tsang, �??Efficient Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 85, 3343-3345 (2004)
    [CrossRef]
  5. O. Boyraz and B. Jalali, �??Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,�?? IEICE Elect. Express 1, 429-434 (2004)
    [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic Press, New York, 1995).
  7. D. F. Edwards, �??Silicon (Si),�?? in Handbook of Optical Constants of Solids, E. D. Palik, eds. (Academic Press, San Diego, Calif., 1998), 547-569.
  8. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,�?? Appl. Phys. Lett. 80, 416-418 (2002).
    [CrossRef]
  9. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, �??Influence of nonlinear absorption on Raman amplification in Silicon waveguides,�?? Opt. Express 12, 2774-2780 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774</a>
    [CrossRef] [PubMed]
  10. O. Boyraz and B. Jalali, �??Demonstration of a silicon Raman laser,�?? Opt. Express 12, 5269-5273 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269</a>
    [CrossRef] [PubMed]
  11. Details are available at <a href="http://www.photond.com">http://www.photond.com</a>
  12. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, West Sussex, 2004).
    [CrossRef]
  13. R. A. Soref and B. R. Bennett, �??Electro-optical effects in Silicon,�?? IEEE J. Quantum Electron. QE-23, 123-129 (1987)
    [CrossRef]
  14. R. A. Soref and B. R. Bennett, �??Kramers-Kronig analysis of electro-optical switching in silicon,�?? Proc. SPIE 704, 32-37 (1986).

Appl. Phys. Lett. (3)

T. K. Liang and H. K. Tsang, �??Efficient Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 85, 3343-3345 (2004)
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,�?? Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, �??Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,�?? Appl. Phys. Lett. 85, 2196-2198 (2004)
[CrossRef]

Handbook of Optical Constants of Solids (1)

D. F. Edwards, �??Silicon (Si),�?? in Handbook of Optical Constants of Solids, E. D. Palik, eds. (Academic Press, San Diego, Calif., 1998), 547-569.

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, �??Electro-optical effects in Silicon,�?? IEEE J. Quantum Electron. QE-23, 123-129 (1987)
[CrossRef]

IEICE Elect. Express (1)

O. Boyraz and B. Jalali, �??Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,�?? IEICE Elect. Express 1, 429-434 (2004)
[CrossRef]

Opt. Express (4)

Proc. SPIE (1)

R. A. Soref and B. R. Bennett, �??Kramers-Kronig analysis of electro-optical switching in silicon,�?? Proc. SPIE 704, 32-37 (1986).

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic Press, New York, 1995).

Details are available at <a href="http://www.photond.com">http://www.photond.com</a>

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, West Sussex, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the SOI p-i-n waveguide used in our experiment.

Fig. 2.
Fig. 2.

Measured and modeled output power as a function of the input power for a 4.8 cm long waveguide containing a reverse biased p-i-n diode with various bias voltages. Symbols represent the experimental data and curves are the modeled results. The carrier lifetime is used as a fitting parameter for each bias voltage.

Fig. 3.
Fig. 3.

Experimental setup of CW gain measurement, DUT is device under test

Fig. 4.
Fig. 4.

Net Raman gain for a p-i-n diode embedded in a silicon waveguide as a function of the pump intensity for a 4.8 cm long silicon waveguide at different bias voltages. Symbols represent the experimental results and solid curve is the modeling result. The Raman gain coefficient used in the simulation is gr =9.5 cm/GW.

Fig. 5.
Fig. 5.

Net Raman gain as a function of the pump wavelength for a 4.8 cm long silicon waveguide. The pump power is 511 mW, the probe wavelength is 1684 nm, and the reverse bias on the p-i-n is 25 V.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N ( z ) = τ β 2 hv P 2 ( z ) A eff 2
dP ( z ) dz = αP ( z ) β A eff P 2 ( z ) σN ( z ) P ( z )
dP s ( z ) dz = α P s ( z ) 2 β g r A eff P ( z ) P s ( z ) σ N ( z ) P s ( z )
G = 10 log P s ( L ) P s ( 0 )

Metrics