Abstract

Quite recently, it was found that metal wires can effectively guide terahertz radiation. Based on the fact that the absolute values of the relative permittivities of metals in the spectral region of terahertz radiation are huge, we here analyse the properties of this kind of waveguide and explain the related experimental results. In particular, we show that the observed waveguiding is due to the propagation of an azimuthally polarized surface plasmon along the wire. Some related aspects, such as the choice of metal and the slowly decaying modal field, are also discussed. In particular, we show that, if a copper wire with a radius of 0.45 mm is used, the attenuation coefficient is smaller than 2×10-3 cm-1 in the whole range of 0.1~1 THz.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. M. Mittleman, ed. Sensing with Terahertz Radiation (Springer, Heidelberg, 2002).
  2. P. R. Smith, D. H. Auston, and M. C. Nuss, �??Subpicosecond photoconducting dipole antennas,�?? IEEE J. Quant. Electron. 24, 255-260 (1998).
    [CrossRef]
  3. M. Exter and D. Grischkowsky, �??Characterization of an optoelectronic terahertz beam system,�?? IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990).
    [CrossRef]
  4. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, �??Generation and detection of terahertz pulses from biased semiconductor antennas,�?? J. Opt. Soc. Am. B 13, 2424-2436 (1996).
    [CrossRef]
  5. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, �??T-ray imaging,�?? IEEE J. Select.Top. Quant. Electron. 2, 679-692 (1996).
    [CrossRef]
  6. R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, �??Chemical recognition of gases and gas mixtures with terahertz waves,�?? Opt. Lett. 21, 2011-2013 (1996).
    [CrossRef] [PubMed]
  7. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, �??Terahertz pulsed imaging of skin cancer in the time and frequency domain,�?? J. Biol. Phys. 29, 257-261 (2003).
    [CrossRef]
  8. K. Kawase, Y. Ogawa, and Y. Watanabe, �??Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,�?? Opt. Express 11, 2549-2554 (2003).
    [CrossRef] [PubMed]
  9. S. Wang and X. �??C. Zhang, �??Pulsed terahertz tomography,�?? J. Phys. D 37, R1-R36 (2004).
    [CrossRef]
  10. R. W. McGowan, G. Gallot, and D. Grischkowsky, �??Propagation of ultrawideband short pulses of THz radiation through submillimeter-diameter circular waveguides,�?? Opt. Lett. 24, 1431-1433 (1999).
    [CrossRef]
  11. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, �??Terahertz waveguides,�?? J. Opt. Soc. Am. B 17, 851-863 (2000).
    [CrossRef]
  12. R. Mendis and D. Grischkowsky, �??Plastic ribbon THz waveguides,�?? J. Appl. Phys. 88, 4449-4451 (2000).
    [CrossRef]
  13. S. P. Jamison, R. W. McGown, and D. Grischkowsky, �??Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber,�?? Appl. Phys. Lett. 76, 1987-1989 (2000).
    [CrossRef]
  14. R. Mendis and D. Grischkowsky, �??Undistorted guided-wave propagation of subpicosecond terahertz pulses,�?? Opt. Lett. 26, 846-848 (2001).
    [CrossRef]
  15. R. Mendis and D. Grischkowsky, �??THz interconnect with low loss and low group velocity dispersion,�?? IEEE Microwave Wireless Comp. Lett. 11, 444-446 (2001).
    [CrossRef]
  16. S. Coleman and D. Grischkowsky, �??A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics,�?? Appl. Phys. Lett. 83, 3656-3658 (2003).
    [CrossRef]
  17. K. Wang and D. M. Mittleman, �??Metal wires for terahertz wave guiding,�?? Nature (London), 432, 376-379 (2004).
    [CrossRef]
  18. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988).
  19. <a href="http://www.surfaceplasmonoptics.org">http://www.surfaceplasmonoptics.org</a>
  20. Q. Cao and Ph. Lalanne, �??Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,�?? Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef] [PubMed]
  21. S. I. Bozhevolnyi, �??Waveguiding in surface plasmon polariton band gap structures,�?? Phys. Rev. Lett. 86, 3008-3011 (2001).
    [CrossRef] [PubMed]
  22. M. I. Stockman, �??Nanofocusing of optical energy in tapered plasmonic waveguides,�?? Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  23. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, �??Surface polaritons in a circularly cylindrical interface: surface plasmons,�?? Phys. Rev. B 10, 3038-3051 (1974).
    [CrossRef]
  24. U. Schröter and A. Dereux, �??Surface plasmon polaritons on metal cylinders with dielectric core,�?? Phys. Rev. B 64, 125420 (2001).
    [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon Press, Oxford, 1975).
  26. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge U. Press, Cambridge, UK 1966).
  27. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, �??Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,�?? Appl. Opt. 24, 4493-4499 (1985).
    [CrossRef] [PubMed]
  28. <a href="http://hyperphysics.phy-astr.gsu.edu/hbase/tables/magprop.html#c1">http://hyperphysics.phy-astr.gsu.edu/hbase/tables/magprop.html#c1</a>
  29. <a href="http://www.stainless-rebar.org/grades.htm">http://www.stainless-rebar.org/grades.htm</a>
  30. C. Weber and J. Fajans, �??Saturation in �??nonmagnetic�?? stainless steel,�?? Rev. Scientific Instruments 69, 3695- 3696 (1998).
    [CrossRef]
  31. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, �??Focusing light to a tighter spot,�?? Opt. Commun. 179, 1-7 (2000).
    [CrossRef]
  32. R. Dorn, S. Quabis, and G. Leuchs, �??Sharper focus for a radially polarized light beam,�?? Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  33. Q. Zhan and J. R. Leger, �??Focus shaping using cylindrical vector beams,�?? Opt. Express 10, 324-331 (2002).
    [PubMed]

Appl. Opt.

Appl. Phys. Lett.

S. P. Jamison, R. W. McGown, and D. Grischkowsky, �??Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber,�?? Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

S. Coleman and D. Grischkowsky, �??A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics,�?? Appl. Phys. Lett. 83, 3656-3658 (2003).
[CrossRef]

IEEE J. Quant. Electron.

P. R. Smith, D. H. Auston, and M. C. Nuss, �??Subpicosecond photoconducting dipole antennas,�?? IEEE J. Quant. Electron. 24, 255-260 (1998).
[CrossRef]

IEEE J. Select. Top. Quant. Electron.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, �??T-ray imaging,�?? IEEE J. Select.Top. Quant. Electron. 2, 679-692 (1996).
[CrossRef]

IEEE Microwave Wireless Comp. Lett.

R. Mendis and D. Grischkowsky, �??THz interconnect with low loss and low group velocity dispersion,�?? IEEE Microwave Wireless Comp. Lett. 11, 444-446 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

M. Exter and D. Grischkowsky, �??Characterization of an optoelectronic terahertz beam system,�?? IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990).
[CrossRef]

J. Appl. Phys.

R. Mendis and D. Grischkowsky, �??Plastic ribbon THz waveguides,�?? J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

J. Biol. Phys.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, �??Terahertz pulsed imaging of skin cancer in the time and frequency domain,�?? J. Biol. Phys. 29, 257-261 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

S. Wang and X. �??C. Zhang, �??Pulsed terahertz tomography,�?? J. Phys. D 37, R1-R36 (2004).
[CrossRef]

Nature

K. Wang and D. M. Mittleman, �??Metal wires for terahertz wave guiding,�?? Nature (London), 432, 376-379 (2004).
[CrossRef]

Opt. Commun.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, �??Focusing light to a tighter spot,�?? Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, �??Surface polaritons in a circularly cylindrical interface: surface plasmons,�?? Phys. Rev. B 10, 3038-3051 (1974).
[CrossRef]

U. Schröter and A. Dereux, �??Surface plasmon polaritons on metal cylinders with dielectric core,�?? Phys. Rev. B 64, 125420 (2001).
[CrossRef]

Phys. Rev. Lett.

Q. Cao and Ph. Lalanne, �??Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,�?? Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, �??Waveguiding in surface plasmon polariton band gap structures,�?? Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

M. I. Stockman, �??Nanofocusing of optical energy in tapered plasmonic waveguides,�?? Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, �??Sharper focus for a radially polarized light beam,�?? Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Rev. Scientific Instruments

C. Weber and J. Fajans, �??Saturation in �??nonmagnetic�?? stainless steel,�?? Rev. Scientific Instruments 69, 3695- 3696 (1998).
[CrossRef]

Other

<a href="http://hyperphysics.phy-astr.gsu.edu/hbase/tables/magprop.html#c1">http://hyperphysics.phy-astr.gsu.edu/hbase/tables/magprop.html#c1</a>

<a href="http://www.stainless-rebar.org/grades.htm">http://www.stainless-rebar.org/grades.htm</a>

D. M. Mittleman, ed. Sensing with Terahertz Radiation (Springer, Heidelberg, 2002).

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon Press, Oxford, 1975).

G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge U. Press, Cambridge, UK 1966).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988).

<a href="http://www.surfaceplasmonoptics.org">http://www.surfaceplasmonoptics.org</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Normalized modal field of an APSP of a copper wire. The red curve is the modal field outside the metal, and the blue curves are the modal field in the metal. (a) The total profile. (b) The detailed distribution of the very small penetration of the modal field in the metal.

Fig. 2.
Fig. 2.

Change of effective index with the radius R of metal wire. The red curves are the calculated results, and the black curves are the values given by Eq. (8). The dashed curves are Im(neff), and the solid curves are Re(neff)-1.

Fig. 3.
Fig. 3.

(a) Change of effective index with the frequency. The red curve is Im(neff), and the black curve is Re(neff)-1. (b) Change of attenuation with the frequency.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H ϕ = j μ k 0 ( E r z E z r ) ,
E z = j ε k 0 1 r r ( r H ϕ ) ,
E r = j ε k 0 H ϕ z .
E r = ε 1 n eff H ϕ .
H ϕ = j ε k 0 ( μ ε n eff 2 ) d E z dr ,
ρ 2 d 2 E z d ρ 2 + ρ d E z d ρ ρ 2 E z = 0 ,
ε m κ m I 1 ( k 0 κ m R ) I 0 ( k 0 κ m R ) + 1 κ a K 1 ( k 0 κ a R ) K 0 ( k 0 κ a R ) = 0 .
n eff = ε m ( ε m μ m ) ( 1 + ε m ) ( ε m 1 ) .

Metrics