Abstract

We demonstrate spatially resolved polarization encoding of nonlinear information by all-optical poling of photoisomerizable and nonlinear molecules in polymer films. The second harmonic generation (SHG) polarization responses of the photo-induced patterns are imaged by a nonlinear microscope with 2µm lateral resolution. The strong SHG dependence to the poling fields polarizations is applied to information encoding, with a potential in high density optical data storage. In addition, the imprinted local nonlinear susceptibilities of multipolar symmetries cannot be deciphered by more traditional one-photon holography techniques.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Birabassov, T. V. Galstyan, F. Dechamplain and A. Ritcey �??Polarization recording and reconstruction in Disperse Red 1-doped cellulose acetate,�?? Opt. Lett. 24, 649�??651 (1999).
    [CrossRef]
  2. M.Y. Shih, A. Shishido and I.C. Khoo, �??All-Optical image processing by means of a photosensitive non-linear liquid-crystal film: edge enhancement and image addition-substraction,�?? Opt. Lett. 26, 1140�??1142 (2001).
    [CrossRef]
  3. H. Ono, A. Emoto, N. Kawatsuki and T. Hasegawa, �??Multiplex diffraction from functionnalized polymer liquid crystals and polarization conversion,�?? Opt. Express 12, 3422�??3427 (2003).
  4. C. Fiorini, F. Charra and J.M. Nunzi, �??Six wave mixing probe of light-induced second-harmonic generation: example of dye solution,�?? J. Opt. Soc. Am. B 11, 2347-2358 (1994).
    [CrossRef]
  5. S. Brasselet and J. Zyss, �??Control of the photoinduced micro-patterning of nonlinear organic thin films: from molecular to photonic engineering,�?? J. Opt. Soc. Am. B 15, 257-288 (1998).
    [CrossRef]
  6. G. Xu, Q.G. Yang, J. Si, X. Liu, P. Ye, Z. Li and Y. Shen, �??Application of all-optical poling in reversible optical storage in zopolymer films,�?? Opt. Commun. 159, 88�??92 (1999).
    [CrossRef]
  7. N. Matsuoka, K. Kitaoka, J. Si, K. Fujita and K. Hirao, �??Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using all-optical poling technique,�?? Opt. Commun. 185, 467�??472 (2000).
    [CrossRef]
  8. J. Zyss, �??Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,�?? J. Chem. Phys. 98, 6583�??6599 (1993).
    [CrossRef]
  9. S. Bidault, S. Brasselet and J. Zyss, �??Coherent control of the optical nonlinear and luminescence anisotropies in molecular thin films by multiphoton excitations,�?? Opt. Lett. 29, 1242�??1244 (2004).
    [CrossRef] [PubMed]
  10. K.D. Singer, J.E. Sohn, L.A. King, H.M. Gordon, H.E. Katz and C.W. Dirk, �??Second-order nonlinear optical properties of donor- and acceptor-substituted aromatic compounds,�?? J. Opt. Soc. Am. B 6, 1339�??1350 (1989).
    [CrossRef]
  11. C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer and R.J. Twieg, �??(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,�?? J. Am. Chem. Soc. 118, 12950�??12955 (1989).
    [CrossRef]
  12. R. Loucif-Saïbi, K. Nakatani, J. Delaire, M. Dumont and Z. Sekkat, �??Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,�?? Chem. Mater. 5, 229�??236 (1993).
    [CrossRef]
  13. S. Marget, Etude théorique et expérimentale de la relaxation des états excités du colorant laser DCM. Transfert d�??électron intramolculaire et photoisomérisation. Effets de solvant. (PhD Thesis, Orsay, France,1992).

Chem. Mater.

R. Loucif-Saïbi, K. Nakatani, J. Delaire, M. Dumont and Z. Sekkat, �??Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,�?? Chem. Mater. 5, 229�??236 (1993).
[CrossRef]

J. Am. Chem. Soc.

C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer and R.J. Twieg, �??(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,�?? J. Am. Chem. Soc. 118, 12950�??12955 (1989).
[CrossRef]

J. Chem. Phys.

J. Zyss, �??Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,�?? J. Chem. Phys. 98, 6583�??6599 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

G. Xu, Q.G. Yang, J. Si, X. Liu, P. Ye, Z. Li and Y. Shen, �??Application of all-optical poling in reversible optical storage in zopolymer films,�?? Opt. Commun. 159, 88�??92 (1999).
[CrossRef]

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita and K. Hirao, �??Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using all-optical poling technique,�?? Opt. Commun. 185, 467�??472 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S. Marget, Etude théorique et expérimentale de la relaxation des états excités du colorant laser DCM. Transfert d�??électron intramolculaire et photoisomérisation. Effets de solvant. (PhD Thesis, Orsay, France,1992).

Supplementary Material (1)

» Media 1: AVI (545 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

a): Experimental setup for the poling step (G: glan polarizer, S: sample). b): Experimental set-up for the SHG read-out step (F 1: high pass infrared filter, F 2: band pass visible filter, F 3: 530nm interferential filter, L: 150mm lens).

Fig. 2.
Fig. 2.

a): Image of the SH generated by six poled areas on a DR1 film with parallel linear polarized fields (Iω =1.5J/cm 2) during 2min (integration time: 15s). b): Gaussian fit (line) of the SHG intensity distribution (dots) on the diagonal of a poled area.

Fig. 3.
Fig. 3.

a): SH generated by four poled areas on a DR1 film with linear parallel polarized fields (Iω =1.5J/cm 2 during 2min, integration time: 5s, excitations directed respectively along the 0°, 45°, 90° and 135° directions with respect to the X axis). One image is depicted per read-out polarization direction step, rotating in the sample plane as represented by the red line in the inset. b): Image of the SHG intensity of the four poled areas with the read-out polarization parallel to the 90° axis. Insets: SHG polarization responses of each poled area (open circles) and predicted theoretical behavior (lines) in the X,Y plane. [Media 1]

Fig. 4.
Fig. 4.

SHG polarization responses of a poled area on a DCM sample (open circles) compared to the theory (lines) with linear perpendicular (a) and contra-circular (b) exciting fields polarizations (a): Iω =2J/cm 2 during 2min and b): Iω =2.5J/cm 2 during 5min. Insets: SHG intensity imaged on the poled sample with 0°, 40° and 90° read-out polarizations. Integration time: 10 s.

Fig. 5.
Fig. 5.

Simulation of the polarization responses of the one-photon absorption (a,c) and SHG (b,d) in a poled polymer film with linear parallel (a,b) and perpendicular (c,d) ω and 2ω fields polarizations. The ω and 2ω intensities are chosen so that the one-photon absorption probability is four times lower than the two-photon one, which corresponds to usual experimental conditions.

Metrics