Abstract

We demonstrate spatially resolved polarization encoding of nonlinear information by all-optical poling of photoisomerizable and nonlinear molecules in polymer films. The second harmonic generation (SHG) polarization responses of the photo-induced patterns are imaged by a nonlinear microscope with 2µm lateral resolution. The strong SHG dependence to the poling fields polarizations is applied to information encoding, with a potential in high density optical data storage. In addition, the imprinted local nonlinear susceptibilities of multipolar symmetries cannot be deciphered by more traditional one-photon holography techniques.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey “Polarization recording and reconstruction in Disperse Red 1-doped cellulose acetate,” Opt. Lett. 24, 649–651 (1999).
    [Crossref]
  2. M.Y. Shih, A. Shishido, and I.C. Khoo, “All-Optical image processing by means of a photosensitive non-linear liquid-crystal film: edge enhancement and image addition-substraction,” Opt. Lett. 26, 1140–1142 (2001).
    [Crossref]
  3. H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, “Multiplex diffraction from functionnalized polymer liquid crystals and polarization conversion,” Opt. Express 12, 3422–3427 (2003).
  4. C. Fiorini, F. Charra, and J.M. Nunzi, “Six wave mixing probe of light-induced second-harmonic generation: example of dye solution,” J. Opt. Soc. Am. B 11, 2347–2358 (1994).
    [Crossref]
  5. S. Brasselet and J. Zyss, “Control of the photoinduced micro-patterning of nonlinear organic thin films: from molecular to photonic engineering,” J. Opt. Soc. Am. B 15, 257–288 (1998).
    [Crossref]
  6. G. Xu, Q.G. Yang, J. Si, X. Liu, P. Ye, Z. Li, and Y. Shen, “Application of all-optical poling in reversible optical storage in azopolymer films,” Opt. Commun. 159, 88–92 (1999).
    [Crossref]
  7. N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using all-optical poling technique,” Opt. Commun. 185, 467–472 (2000).
    [Crossref]
  8. J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys. 98, 6583–6599 (1993).
    [Crossref]
  9. S. Bidault, S. Brasselet, and J. Zyss, “Coherent control of the optical nonlinear and luminescence anisotropies in molecular thin films by multiphoton excitations,” Opt. Lett. 29, 1242–1244 (2004).
    [Crossref] [PubMed]
  10. K.D. Singer, J.E. Sohn, L.A. King, H.M. Gordon, H.E. Katz, and C.W. Dirk, “Second-order nonlinear optical properties of donor- and acceptor-substituted aromatic compounds,” J. Opt. Soc. Am. B 6, 1339–1350 (1989).
    [Crossref]
  11. C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer, and R.J. Twieg, “(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,” J. Am. Chem. Soc. 118, 12950–12955 (1989).
    [Crossref]
  12. R. Loucif-Saïbi, K. Nakatani, J. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
    [Crossref]
  13. S. Marget, Etude théorique et expérimentale de la relaxation des états excités du colorant laser DCM. Transfert d’électron intramolculaire et photoisomérisation. Effets de solvant. (PhD Thesis, Orsay, France,1992).

2004 (1)

2003 (1)

2001 (1)

2000 (1)

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using all-optical poling technique,” Opt. Commun. 185, 467–472 (2000).
[Crossref]

1999 (2)

G. Xu, Q.G. Yang, J. Si, X. Liu, P. Ye, Z. Li, and Y. Shen, “Application of all-optical poling in reversible optical storage in azopolymer films,” Opt. Commun. 159, 88–92 (1999).
[Crossref]

R. Birabassov, T. V. Galstyan, F. Dechamplain, and A. Ritcey “Polarization recording and reconstruction in Disperse Red 1-doped cellulose acetate,” Opt. Lett. 24, 649–651 (1999).
[Crossref]

1998 (1)

1994 (1)

1993 (2)

J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys. 98, 6583–6599 (1993).
[Crossref]

R. Loucif-Saïbi, K. Nakatani, J. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
[Crossref]

1989 (2)

K.D. Singer, J.E. Sohn, L.A. King, H.M. Gordon, H.E. Katz, and C.W. Dirk, “Second-order nonlinear optical properties of donor- and acceptor-substituted aromatic compounds,” J. Opt. Soc. Am. B 6, 1339–1350 (1989).
[Crossref]

C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer, and R.J. Twieg, “(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,” J. Am. Chem. Soc. 118, 12950–12955 (1989).
[Crossref]

Bidault, S.

Birabassov, R.

Brasselet, S.

Charra, F.

Dechamplain, F.

Delaire, J.

R. Loucif-Saïbi, K. Nakatani, J. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
[Crossref]

Dirk, C.W.

Dumont, M.

R. Loucif-Saïbi, K. Nakatani, J. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
[Crossref]

Emoto, A.

Ermer, S.

C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer, and R.J. Twieg, “(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,” J. Am. Chem. Soc. 118, 12950–12955 (1989).
[Crossref]

Fiorini, C.

Fujita, K.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using all-optical poling technique,” Opt. Commun. 185, 467–472 (2000).
[Crossref]

Galstyan, T. V.

Gordon, H.M.

Hasegawa, T.

Hirao, K.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using all-optical poling technique,” Opt. Commun. 185, 467–472 (2000).
[Crossref]

Katz, H.E.

Kawatsuki, N.

Khoo, I.C.

King, L.A.

Kitaoka, K.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using all-optical poling technique,” Opt. Commun. 185, 467–472 (2000).
[Crossref]

Krdmer, P.

C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer, and R.J. Twieg, “(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,” J. Am. Chem. Soc. 118, 12950–12955 (1989).
[Crossref]

Leung, D.S.

C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer, and R.J. Twieg, “(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,” J. Am. Chem. Soc. 118, 12950–12955 (1989).
[Crossref]

Li, Z.

G. Xu, Q.G. Yang, J. Si, X. Liu, P. Ye, Z. Li, and Y. Shen, “Application of all-optical poling in reversible optical storage in azopolymer films,” Opt. Commun. 159, 88–92 (1999).
[Crossref]

Liu, X.

G. Xu, Q.G. Yang, J. Si, X. Liu, P. Ye, Z. Li, and Y. Shen, “Application of all-optical poling in reversible optical storage in azopolymer films,” Opt. Commun. 159, 88–92 (1999).
[Crossref]

Loucif-Saïbi, R.

R. Loucif-Saïbi, K. Nakatani, J. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
[Crossref]

Lovejoy, S.

C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer, and R.J. Twieg, “(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,” J. Am. Chem. Soc. 118, 12950–12955 (1989).
[Crossref]

Marget, S.

S. Marget, Etude théorique et expérimentale de la relaxation des états excités du colorant laser DCM. Transfert d’électron intramolculaire et photoisomérisation. Effets de solvant. (PhD Thesis, Orsay, France,1992).

Matsuoka, N.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using all-optical poling technique,” Opt. Commun. 185, 467–472 (2000).
[Crossref]

McComb, I.-H.

C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer, and R.J. Twieg, “(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,” J. Am. Chem. Soc. 118, 12950–12955 (1989).
[Crossref]

Moylan, C.R.

C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer, and R.J. Twieg, “(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,” J. Am. Chem. Soc. 118, 12950–12955 (1989).
[Crossref]

Nakatani, K.

R. Loucif-Saïbi, K. Nakatani, J. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
[Crossref]

Nunzi, J.M.

Ono, H.

Ritcey, A.

Sekkat, Z.

R. Loucif-Saïbi, K. Nakatani, J. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
[Crossref]

Shen, Y.

G. Xu, Q.G. Yang, J. Si, X. Liu, P. Ye, Z. Li, and Y. Shen, “Application of all-optical poling in reversible optical storage in azopolymer films,” Opt. Commun. 159, 88–92 (1999).
[Crossref]

Shih, M.Y.

Shishido, A.

Si, J.

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using all-optical poling technique,” Opt. Commun. 185, 467–472 (2000).
[Crossref]

G. Xu, Q.G. Yang, J. Si, X. Liu, P. Ye, Z. Li, and Y. Shen, “Application of all-optical poling in reversible optical storage in azopolymer films,” Opt. Commun. 159, 88–92 (1999).
[Crossref]

Singer, K.D.

Sohn, J.E.

Twieg, R.J.

C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer, and R.J. Twieg, “(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,” J. Am. Chem. Soc. 118, 12950–12955 (1989).
[Crossref]

Wortmann, R.

C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer, and R.J. Twieg, “(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,” J. Am. Chem. Soc. 118, 12950–12955 (1989).
[Crossref]

Xu, G.

G. Xu, Q.G. Yang, J. Si, X. Liu, P. Ye, Z. Li, and Y. Shen, “Application of all-optical poling in reversible optical storage in azopolymer films,” Opt. Commun. 159, 88–92 (1999).
[Crossref]

Yang, Q.G.

G. Xu, Q.G. Yang, J. Si, X. Liu, P. Ye, Z. Li, and Y. Shen, “Application of all-optical poling in reversible optical storage in azopolymer films,” Opt. Commun. 159, 88–92 (1999).
[Crossref]

Ye, P.

G. Xu, Q.G. Yang, J. Si, X. Liu, P. Ye, Z. Li, and Y. Shen, “Application of all-optical poling in reversible optical storage in azopolymer films,” Opt. Commun. 159, 88–92 (1999).
[Crossref]

Zyss, J.

Chem. Mater. (1)

R. Loucif-Saïbi, K. Nakatani, J. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
[Crossref]

J. Am. Chem. Soc. (1)

C.R. Moylan, S. Ermer, S. Lovejoy, I.-H. McComb, D.S. Leung, R. Wortmann, P. Krdmer, and R.J. Twieg, “(dicyanomethylene) pyran derivatives with c2v symmetry: an unusual class of nonlinear optical chromophores,” J. Am. Chem. Soc. 118, 12950–12955 (1989).
[Crossref]

J. Chem. Phys. (1)

J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys. 98, 6583–6599 (1993).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

G. Xu, Q.G. Yang, J. Si, X. Liu, P. Ye, Z. Li, and Y. Shen, “Application of all-optical poling in reversible optical storage in azopolymer films,” Opt. Commun. 159, 88–92 (1999).
[Crossref]

N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, “Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using all-optical poling technique,” Opt. Commun. 185, 467–472 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Other (1)

S. Marget, Etude théorique et expérimentale de la relaxation des états excités du colorant laser DCM. Transfert d’électron intramolculaire et photoisomérisation. Effets de solvant. (PhD Thesis, Orsay, France,1992).

Supplementary Material (1)

» Media 1: AVI (545 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

a): Experimental setup for the poling step (G: glan polarizer, S: sample). b): Experimental set-up for the SHG read-out step (F 1: high pass infrared filter, F 2: band pass visible filter, F 3: 530nm interferential filter, L: 150mm lens).

Fig. 2.
Fig. 2.

a): Image of the SH generated by six poled areas on a DR1 film with parallel linear polarized fields (Iω =1.5J/cm 2) during 2min (integration time: 15s). b): Gaussian fit (line) of the SHG intensity distribution (dots) on the diagonal of a poled area.

Fig. 3.
Fig. 3.

a): SH generated by four poled areas on a DR1 film with linear parallel polarized fields (Iω =1.5J/cm 2 during 2min, integration time: 5s, excitations directed respectively along the 0°, 45°, 90° and 135° directions with respect to the X axis). One image is depicted per read-out polarization direction step, rotating in the sample plane as represented by the red line in the inset. b): Image of the SHG intensity of the four poled areas with the read-out polarization parallel to the 90° axis. Insets: SHG polarization responses of each poled area (open circles) and predicted theoretical behavior (lines) in the X,Y plane. [Media 1]

Fig. 4.
Fig. 4.

SHG polarization responses of a poled area on a DCM sample (open circles) compared to the theory (lines) with linear perpendicular (a) and contra-circular (b) exciting fields polarizations (a): Iω =2J/cm 2 during 2min and b): Iω =2.5J/cm 2 during 5min. Insets: SHG intensity imaged on the poled sample with 0°, 40° and 90° read-out polarizations. Integration time: 10 s.

Fig. 5.
Fig. 5.

Simulation of the polarization responses of the one-photon absorption (a,c) and SHG (b,d) in a poled polymer film with linear parallel (a,b) and perpendicular (c,d) ω and 2ω fields polarizations. The ω and 2ω intensities are chosen so that the one-photon absorption probability is four times lower than the two-photon one, which corresponds to usual experimental conditions.

Metrics