Abstract

We demonstrate a 40 Gb/s self-synchronizing, all-optical packet clock recovery circuit designed for efficient packet-mode traffic. The circuit locks instantaneously and enables sub-nanosecond packet spacing due to the low clock persistence time. A low-Q Fabry-Perot filter is used as a passive resonator tuned to the line-rate that generates a retimed clock-resembling signal. As a reshaping element, an optical power-limiting gate is incorporated to perform bitwise pulse equalization. Using two preamble bits, the clock is captured instantly and persists for the duration of the data packet increased by 16 bits. The performance of the circuit suggests its suitability for future all-optical packet-switched networks with reduced transmission overhead and fine network granularity.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. J. Blumenthal, �??Optical packet switching,�?? in Proceedings of European Conference on Optical Communication (ECOC�??2004), Stockholm, Sweden, pp. 830-833 (2004).
  2. E. Kehayas. G. T. Kanellos, L. Stampoulidis. D. Tsiokos, N. Pleros, G. Guekos and H. Avramopoulos, �??Packet-format and network-traffic transparent optical signal processing,�?? J. Lightwave Technol. 22, 2548- 2556 (2004).
    [CrossRef]
  3. S. Kimura, A. Okada, J. Endo, Y. Suzuki and M. Matsuoka, �??A 10 Gbit/s burst-mode 3R receiver unit with a new equalizing amplifier for high-speed optical packet communications,�?? in Proceedings of European Conference on Optical Communication (ECOC�??2003), Rimini, Italy, pp. 1042-1043 (2003).
  4. M. Mohrle, C. Bornholdt, O. Brox, S. Bauer and B. Sartorius, �??Multi-section DFB lasers for high speed signal processing/regeneration,�?? Optical Fiber Communication, (Optical Society of America, Washington, D.C., 2002), paper TuU1.
  5. D. T. K. Tong, B. Mikkelsen, T. N. Nielsen, K. F. Dreyer and J. E. Johnson, �??Optoelectronic phase-locked loop with balanced photodetection for clock recovery in high-speed optical time-division-multiplexed systems,�?? IEEE Photon. Technol. Lett. 12, 1064-1066 (2000).
    [CrossRef]
  6. J. Slovak, C. Bornholdt and B. Sartorius, �??All-Optical 3R Regenerator for Asynchronous Data Packets at 40 Gb/s,�?? in Proceedings of European Conference on Optical Communication (ECOC �??2004), Stockholm, Sweden, pp. 388-389 (2004).
  7. Z. Hu et al., �??40 Gb/s Optical Packet Clock Recovery Using a Travelling-wave Electroabsorption Modulator -Based Ring Oscillator,�?? in Proceedings of European Conference on Optical Communication (ECOC�??2004), Stockholm, Sweden, pp. 436-437 (2004).
  8. E. Tangdiongga, J. P. Turkiewicz, G.D. Khoe and H. de Waardt, �??Clock recovery by a fiber ring laser employing a linear optical amplifier,�?? IEEE Photon. Technol. Lett. 16, 611-613 (2004).
    [CrossRef]
  9. C. Bintjas, K. Yiannopoulos, N. Pleros, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos and G. Guekos, �??Clock recovery circuit for optical packets,�?? IEEE Photon. Technol. Lett. 14, 1363-1365 (2002).
    [CrossRef]
  10. N. Pleros, G. T. Kanellos, C. Bintjas, A. Hatziefremidis and H. Avramopoulos, �??Optical Power Limiter using a saturated SOA-based Interferometric Switch,�?? IEEE Photon. Technol. Lett. 16, 2350 �?? 2352 (2004).
    [CrossRef]
  11. R. J. Manning and G. Sherlock, �??Recovery of a �? phase shift in ~12.5 ps in a semiconductor laser amplifier,�?? Electron. Lett. 31, 307-308 (1995).
    [CrossRef]

ECOC ???2004 (1)

J. Slovak, C. Bornholdt and B. Sartorius, �??All-Optical 3R Regenerator for Asynchronous Data Packets at 40 Gb/s,�?? in Proceedings of European Conference on Optical Communication (ECOC �??2004), Stockholm, Sweden, pp. 388-389 (2004).

ECOC???2003 (1)

S. Kimura, A. Okada, J. Endo, Y. Suzuki and M. Matsuoka, �??A 10 Gbit/s burst-mode 3R receiver unit with a new equalizing amplifier for high-speed optical packet communications,�?? in Proceedings of European Conference on Optical Communication (ECOC�??2003), Rimini, Italy, pp. 1042-1043 (2003).

ECOC???2004 (2)

D. J. Blumenthal, �??Optical packet switching,�?? in Proceedings of European Conference on Optical Communication (ECOC�??2004), Stockholm, Sweden, pp. 830-833 (2004).

Z. Hu et al., �??40 Gb/s Optical Packet Clock Recovery Using a Travelling-wave Electroabsorption Modulator -Based Ring Oscillator,�?? in Proceedings of European Conference on Optical Communication (ECOC�??2004), Stockholm, Sweden, pp. 436-437 (2004).

Electron. Lett. (1)

R. J. Manning and G. Sherlock, �??Recovery of a �? phase shift in ~12.5 ps in a semiconductor laser amplifier,�?? Electron. Lett. 31, 307-308 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

D. T. K. Tong, B. Mikkelsen, T. N. Nielsen, K. F. Dreyer and J. E. Johnson, �??Optoelectronic phase-locked loop with balanced photodetection for clock recovery in high-speed optical time-division-multiplexed systems,�?? IEEE Photon. Technol. Lett. 12, 1064-1066 (2000).
[CrossRef]

E. Tangdiongga, J. P. Turkiewicz, G.D. Khoe and H. de Waardt, �??Clock recovery by a fiber ring laser employing a linear optical amplifier,�?? IEEE Photon. Technol. Lett. 16, 611-613 (2004).
[CrossRef]

C. Bintjas, K. Yiannopoulos, N. Pleros, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos and G. Guekos, �??Clock recovery circuit for optical packets,�?? IEEE Photon. Technol. Lett. 14, 1363-1365 (2002).
[CrossRef]

N. Pleros, G. T. Kanellos, C. Bintjas, A. Hatziefremidis and H. Avramopoulos, �??Optical Power Limiter using a saturated SOA-based Interferometric Switch,�?? IEEE Photon. Technol. Lett. 16, 2350 �?? 2352 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Optical Fiber Communication (1)

M. Mohrle, C. Bornholdt, O. Brox, S. Bauer and B. Sartorius, �??Multi-section DFB lasers for high speed signal processing/regeneration,�?? Optical Fiber Communication, (Optical Society of America, Washington, D.C., 2002), paper TuU1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Pulse traces of (a) three input data packets, (b) corresponding FPF output, (c) recovered clock packets at time base 500 ps/div and (d) single packet, (e) FPF output and (f) single recovered clock packet at time base 200 ps/div. The vertical scale is 335µW/div.

Fig. 3.
Fig. 3.

Eye diagrams of (a) incoming data, (b) FPF output and (c) extracted clock at 50 ps/div and (d) incoming data, (e) FPF output and (f) recovered clock at 10 ps/div. The vertical scale of upper row is 390µW/div and the lower row vertical scale is 500µW/div.

Fig. 4.
Fig. 4.

Recovered clock (a) optical spectrum and (b) autocorrelation trace with sech fitting.

Metrics