Abstract

Doppler optical coherence tomography (DOCT) is a technique for simultaneous cross-sectional imaging of tissue structure and blood flow. We derive the fundamental uncertainty limits on frequency estimation precision in DOCT using the Cramer-Rao lower bound in the case of additive (e.g., thermal, shot) noise. Experimental results from a mirror and a scattering phantom are used to verify the theoretical limits. Our results demonstrate that the stochastic nature of frequency noise influences the precision of flow imaging, and that the noise model must be selected judiciously in order to estimate the frequency precision.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Z. P. Chen, T. E. Milner, D. Dave and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
    [CrossRef] [PubMed]
  2. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton and A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography," Opt. Lett. 22, 1439-1441 (1997).
    [CrossRef]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  4. S. Yazdanfar, A. M. Rollins and J. A. Izatt, "Imaging and velocimetry of the human retinal circulation using color Doppler optical coherence tomography," Opt. Lett. 25, 1448-1450 (2000).
    [CrossRef]
  5. S. Yazdanfar, A. M. Rollins and J. A. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
    [PubMed]
  6. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>
    [CrossRef] [PubMed]
  7. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>
    [CrossRef] [PubMed]
  8. Y. Zhao, Z. P. Chen, C. Saxer, S. Xiang, J. F. de Boer and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
    [CrossRef]
  9. D. Piao, L. L. Otis, N. K. Dutta and Q. Zhu, "Quantitative assessment of flow velocity-estimation algorithms for optical Doppler tomography imaging," Appl. Opt. 41, 6118-6127 (2002).
    [CrossRef] [PubMed]
  10. V. X. D. Yang, M. L. Gordon, S.-J. Tang, N. E. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts," Opt. Express 11, 2416-2424 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2416">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2416</a>
    [CrossRef] [PubMed]
  11. Y. Imai and K. Tanaka, "Direct velocity sensing of flow distribution based on low-coherence interferometry," J. Opt. Soc. Am. A 16, 2007-2012 (1999).
    [CrossRef]
  12. S. Yazdanfar, M. D. Kulkarni and J. A. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Opt. Express 1, 424-431 (1997). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-13-424">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-13-424</a>
    [CrossRef] [PubMed]
  13. S. Yazdanfar and J. A. Izatt, "Self-referenced Doppler optical coherence tomography," Opt. Lett. 27, 2085-2087 (2002).
    [CrossRef]
  14. H. L. Van Trees, Detection, estimation, and modulation theory, Pt. 1 (John Wiley & Sons, New York, 1968).
  15. L. L. Scharf, Statistical signal processing: Detection, estimation, and time series analysis (Addison-Wesley Publishing Co., Reading, MA, 1991).
  16. J. W. Goodman, Statistical Optics (John Wiley & Sons, Inc., Hoboken, NJ, 1985).
  17. M. Bashkansky and J. Reintjes, "Statistics and reduction of speckle in optical coherence tomography," Opt. Lett. 25, 545-547 (2000).
    [CrossRef]
  18. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar and J. A. Izatt, "Velocity estimation accuracy and frame rate limitations in color Doppler optical coherence tomography," Opt. Lett. 23, 1057-1059 (1998).
    [CrossRef]
  19. A. M. Rollins, S. Yazdanfar, J. K. Barton and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
    [CrossRef] [PubMed]
  20. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-794">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-794</a>
    [CrossRef] [PubMed]
  21. D. A. Boas, K. K. Bizheva and A. M. Siegel, "Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media," Opt. Lett. 23, 319-321 (1998).
    [CrossRef]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

S. Yazdanfar, A. M. Rollins and J. A. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
[PubMed]

J. Biomed. Opt. (1)

A. M. Rollins, S. Yazdanfar, J. K. Barton and J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Express (5)

S. Yazdanfar, M. D. Kulkarni and J. A. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Opt. Express 1, 424-431 (1997). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-13-424">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-13-424</a>
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-794">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-794</a>
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, S.-J. Tang, N. E. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts," Opt. Express 11, 2416-2424 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2416">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2416</a>
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>
[CrossRef] [PubMed]

Opt. Lett. (8)

Y. Zhao, Z. P. Chen, C. Saxer, S. Xiang, J. F. de Boer and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
[CrossRef]

M. Bashkansky and J. Reintjes, "Statistics and reduction of speckle in optical coherence tomography," Opt. Lett. 25, 545-547 (2000).
[CrossRef]

Z. P. Chen, T. E. Milner, D. Dave and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton and A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography," Opt. Lett. 22, 1439-1441 (1997).
[CrossRef]

D. A. Boas, K. K. Bizheva and A. M. Siegel, "Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media," Opt. Lett. 23, 319-321 (1998).
[CrossRef]

M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar and J. A. Izatt, "Velocity estimation accuracy and frame rate limitations in color Doppler optical coherence tomography," Opt. Lett. 23, 1057-1059 (1998).
[CrossRef]

S. Yazdanfar, A. M. Rollins and J. A. Izatt, "Imaging and velocimetry of the human retinal circulation using color Doppler optical coherence tomography," Opt. Lett. 25, 1448-1450 (2000).
[CrossRef]

S. Yazdanfar and J. A. Izatt, "Self-referenced Doppler optical coherence tomography," Opt. Lett. 27, 2085-2087 (2002).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (3)

H. L. Van Trees, Detection, estimation, and modulation theory, Pt. 1 (John Wiley & Sons, New York, 1968).

L. L. Scharf, Statistical signal processing: Detection, estimation, and time series analysis (Addison-Wesley Publishing Co., Reading, MA, 1991).

J. W. Goodman, Statistical Optics (John Wiley & Sons, Inc., Hoboken, NJ, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Fiber-optic, time-domain Michelson interferometer used to measure the frequency precision of Doppler OCT. BPF, band-pass filter; A/D, analog-to-digital converter; I, Q, in-phase and quadrature signal components after demodulation.

Fig. 2.
Fig. 2.

Algorithm for calculating frequency precision and signal-to-noise ratio (SNR). The OCT reflectance image of Liposyn is shown on the left, with the arrow indicating the direction of the incident beam. The standard deviation of the noise is calculated in the region of interest (ROI) located outside of the sample. At each axial position, the average signal value across 100 scans is measured and divided by the noise to measure local SNR. At the same depth, the variance of the Doppler frequency (right) is measured and compared to the theoretical frequency precision.

Fig. 3.
Fig. 3.

Experimental and theoretical frequency standard deviation (SD) versus SNR for A) additive noise only and B) both additive and multiplicative (speckle) noise. The observation time was different for the two experiments, resulting in different theoretical limits. The inset of A), magnifying lower SNR values on a log-log scale, suggests that the autocorrelation algorithm used to estimate frequency is a maximum likelihood estimator. CRLB, Cramer-Rao lower bound based on the additive model of Eqs. (2) and (5).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = A ( t ) cos [ 2 π ( f r f s ) t + β ( t ) ] ,
s ( t ) = A ( t ) cos [ 2 π f s t + β ( t ) ] , 0 t t 0
f s min = 1 t 0
Var [ α ̂ ( R ) α ] ( E { [ ln p ( R α ) α ] 2 } ) 1
r ( t ) = s ( t , α ) + n ( t )
σ α ̂ 2 ( 1 N 0 0 t 0 [ s ( t , α ) α ] 2 d t ) 1
σ f ̂ 2 ( 2 π 2 3 A 2 N 0 t 0 2 ) 1
f s min σ 1 t 0 SNR
R ( τ ) = R ( τ ) exp [ i ϕ ( τ ) ] s * ( t ) s ( t + τ )
Ω = 16 ( π λ 0 ) 2 D T [ rad s ]

Metrics