Abstract

A compact mode-locked Ti:sapphire laser, emitting a broad spectrum of 277 nm bandwidth, centered at 790 nm, was used to measure the dependence of the aberrations of the human eye with wavelength in the near infrared region. The aberrations were systematically measured with a Hartmann-Shack wave-front sensor at the following wavelengths: 700, 730, 750, 780, 800, 850, 870 and 900 nm, in four normal subjects. During the measurements, the wavelengths were selected by using 10 nm band-pass filters. We found that monochromatic high order aberrations, beyond defocus, were nearly constant across 700 to 900 nm wavelength in the four subjects. The average chromatic difference in defocus was 0.4 diopters in the considered wavelength band. The predictions of a simple water-eye model were compared with the experimental results in the near infrared. These results have potential applications in those situations where defocus or higher order aberration correction in the near infrared is required. This is the case of many imaging techniques: scanning laser ophthalmoscope, flood illumination fundus camera, or optical coherence tomography.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. S. Smirnov, �??Measurement of the wave aberration of the human eye,�?? Biofizika 6, 687-703 (1961)
    [PubMed]
  2. B. Howland and H. C. Howland, �??Subjective measurement of high order aberrations of the eye,�?? Science 193, 580-582 (1976)
    [CrossRef] [PubMed]
  3. G. Walsh, W. N. Charman, and H. C. Howland, �??Objetive technique for the determination of monochromatic aberrations of the human eyes,�?? J. Opt. Soc. Am. A 1, 987-992 (1984)
    [CrossRef] [PubMed]
  4. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, �??Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor,�?? J. Opt. Soc. Am. A. 11, 1949-1957 (1994)
    [CrossRef]
  5. I. Iglesias, E. Berrio, and P. Artal, �??Estimates of the ocular wave aberration from pairs of double-pass retinal images,�?? J. Opt. Soc. Am. A. 15, 2466-2476 (1998)
    [CrossRef]
  6. P. Artal and A. Guirao, �??Contributions of the cornea and the lens to the aberrations of the human eye,�?? Opt. Lett. 23, 1713-1715 (1998)
    [CrossRef]
  7. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, �??Compensation of corneal aberrations by the internal optics in the human eye,�?? Journal of Vision 1, 1-8 (2001), <a href="http://journalofvision.org/1/1/1">.http://journalofvision.org/1/1/1</a>
    [CrossRef]
  8. G. Wald and D. R. Griffin, �??The change in refractive power of the human eye in dim and bright light,�?? J. Opt. Soc. Am. 37, 321-336 (1947)
    [CrossRef] [PubMed]
  9. R. E. Bedford and G. Wyszecki, �??Axial chromatic aberration of the human eye,�?? J. Opt. Soc. Am. 47, 564- 565 (1957)
    [CrossRef] [PubMed]
  10. W. N. Charman and J. A. Jennings, �??Objective measurements of the longitudinal chromatic aberration of the human eye,�?? Vision Res. 16, 999-1005 (1976)
    [CrossRef] [PubMed]
  11. P. A. Howarth and A. Bradley, �??The longitudinal chromatic aberration of the human eye and its correction,�?? Vision Res. 26, 361-366 (1986)
    [CrossRef] [PubMed]
  12. Y. U. Ogboso and H. E. Bedell, �??Magnitude of lateral chromatic aberration across the retina of the human eye,�?? J. Opt. Soc. Am. A 4, 1666-1672 (1987)
    [CrossRef] [PubMed]
  13. P. Simonet and M. C. W. Campbell, �??The optical transverse chromatic aberration on the fovea of the human eye,�?? Vision Res. 30, 187-206 (1990)
    [CrossRef] [PubMed]
  14. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, �??The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans,�?? App. Opt. 31, 592-599 (1992)
    [CrossRef]
  15. A. van Meeteren, �??Calculations of the optical modulation transfer function of the human eye for white light,�?? Opt. Acta 21, 395-412 (1974)
    [CrossRef]
  16. S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, �??A new approach to study ocular chromatic aberrations,�?? Vision Res. 39, 4309-4323 (1999)
    [CrossRef]
  17. F. C. Delori and K. P. Pflibsen, �??Spectral reflectance of the human ocular fundus,�?? Appl. Opt. 28, 1061-1067 (1989)
    [CrossRef] [PubMed]
  18. J. Santamaría, P. Artal, and J. Bescós, �??Determination of the point-spread function of the human eye using a hybrid optical-digital method,�?? J. Opt. Soc. Am. A 4, 1109-1114 (1987)
    [CrossRef] [PubMed]
  19. N. López-Gil and P. Artal, �??Comparison of double-pass estimates of the retinal image quality obtained with green and near-infrared light,�?? J. Opt. Soc. Am. A 14, 961-971 (1997)
    [CrossRef]
  20. L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, �??Aberrations of the human eye in visible and near infrared illumination,�?? Optom. Vis. Sci. 80, 26-35 (2003)
    [CrossRef] [PubMed]
  21. T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, �??Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,�?? Appl. Phys. B 77, 125�??128 (2003)
    [CrossRef]
  22. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, �??Analysis of the performance of the Hartmann-Shack sensor in the human eye,�?? J. Opt. Soc. Am. A 17, 1388-1400 (2000)
    [CrossRef]
  23. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, �??Ultra high resolution ophthalmic optical coherence tomography,�?? Nat. Med. 7, 502-507 (2001)
    [CrossRef] [PubMed]
  24. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, �??Dynamics of the eye´s wave aberration,�?? J. Opt. Soc. Am. A 18, 1-10 (2001)
    [CrossRef]
  25. L. N. Thibos, A. Bradley, and X. Zhang, �??The effect of ocular chromatic aberration on monocular visual performance,�?? Optom. Vis. Sci. 68, 599-607 (1991)
    [CrossRef] [PubMed]
  26. Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag Berlin Heidelberg New York, 1980).
  27. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, �??Adaptive Optics Ultrahigh Resolution Optical Coherence Tomography,�?? Opt. Lett. 29, 2142-2144 (2004)
    [CrossRef] [PubMed]

App. Opt.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, �??The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans,�?? App. Opt. 31, 592-599 (1992)
[CrossRef]

Appl. Opt.

Appl. Phys. B

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, �??Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,�?? Appl. Phys. B 77, 125�??128 (2003)
[CrossRef]

Biofizika

M. S. Smirnov, �??Measurement of the wave aberration of the human eye,�?? Biofizika 6, 687-703 (1961)
[PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. A.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, �??Objective measurement of wave aberration of the human eye with the use of a Hartmann-Shack wave-front sensor,�?? J. Opt. Soc. Am. A. 11, 1949-1957 (1994)
[CrossRef]

Journal of Vision

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, �??Compensation of corneal aberrations by the internal optics in the human eye,�?? Journal of Vision 1, 1-8 (2001), <a href="http://journalofvision.org/1/1/1">.http://journalofvision.org/1/1/1</a>
[CrossRef]

Nat. Med.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, �??Ultra high resolution ophthalmic optical coherence tomography,�?? Nat. Med. 7, 502-507 (2001)
[CrossRef] [PubMed]

Opt. Acta

A. van Meeteren, �??Calculations of the optical modulation transfer function of the human eye for white light,�?? Opt. Acta 21, 395-412 (1974)
[CrossRef]

Opt. Lett.

Optom. Vis. Sci.

L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, �??Aberrations of the human eye in visible and near infrared illumination,�?? Optom. Vis. Sci. 80, 26-35 (2003)
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Zhang, �??The effect of ocular chromatic aberration on monocular visual performance,�?? Optom. Vis. Sci. 68, 599-607 (1991)
[CrossRef] [PubMed]

Science

B. Howland and H. C. Howland, �??Subjective measurement of high order aberrations of the eye,�?? Science 193, 580-582 (1976)
[CrossRef] [PubMed]

Vision Res.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, �??A new approach to study ocular chromatic aberrations,�?? Vision Res. 39, 4309-4323 (1999)
[CrossRef]

W. N. Charman and J. A. Jennings, �??Objective measurements of the longitudinal chromatic aberration of the human eye,�?? Vision Res. 16, 999-1005 (1976)
[CrossRef] [PubMed]

P. A. Howarth and A. Bradley, �??The longitudinal chromatic aberration of the human eye and its correction,�?? Vision Res. 26, 361-366 (1986)
[CrossRef] [PubMed]

P. Simonet and M. C. W. Campbell, �??The optical transverse chromatic aberration on the fovea of the human eye,�?? Vision Res. 30, 187-206 (1990)
[CrossRef] [PubMed]

Other

Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag Berlin Heidelberg New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of the experimental apparatus. The aberrations are measured by a Hartmann-Shack wave front sensor (HS) specifically designed for the human eye. The femtosecond mode-locked Ti:sapphire laser is coupled to the system through a 100-meters long fiber, preventing the existence of intensity peaks in the illumination beam. The different wavelengths in the NIR band are selected by means of a set of interference filters placed immediately behind the fiber’s collimator. See text for a more detailed description of the experimental system and its operation.

Fig. 2.
Fig. 2.

Color-coded representations of the ocular aberrations (up to 5th order, excluding defocus) over a 7 mm diameter pupil as a function of the illumination wavelength. Wavelengths were selected by means of interference filters of 10 nm band-width. For each subject, bottom-right panel corresponds to broad-band illumination (no interference filter).

Fig. 3.
Fig. 3.

Evolution of selected monochromatic aberrations (7 mm pupil size) as a function of wavelength. Squares: astigmatism; circles: coma aberration; and triangles: fourth order spherical aberration. The aberration estimates obtained for broad-band illumination are showed as larger points. The error bars show the standard deviation. The dashed lines correspond to the linear fit performed in each case.

Fig. 4.
Fig. 4.

RMS of the average ocular aberrations in the near IR band for each subject in a 7 mm pupil size. The defocus aberration was not included in the RMS. The dashed lines represent the linear fits. The obtained RMS when using the broad-band illumination (no interference filter) is showed with larger points for each subject.

Fig. 5.
Fig. 5.

Defocus (Zernike polynomial Z40, 7 mm pupil size) as a function of wavelength. The linear fits are presented as dashed lines in each case. Each curve is labeled with the obtained linear equation together with the r2 parameter. From top to bottom, the curves correspond to the subjects JOS, AUN, BHE and PPR. The error bars represent the standard deviation.

Fig. 6.
Fig. 6.

Average chromatic defocus (D) from all the subjects as a function of wavelength in the near IR range (solid circles). The dashed line shows the linear fit performed to the average values while the blue solid line represents the extended water-eye model (see the text for more details) in the considered band. The obtained equation and the r2 parameter from the calculated linear fit are also included on the figure. The error bars represent the standard deviation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ R = 0.0021 ( λ 700 ) 1.4341 ,
Δ R = n 0 n ( λ ) r · n D ,
n ( λ ) = a + b ( λ c ) .

Metrics