Abstract

We examine the performance of optical 8-ary differential phase-shift keying transmission systems according to the type of receiver structure and modulation format. Compared with the approach based on a multilevel decision, we found that a bilevel receiver provides 3-dB gain in optical signal-to-noise ratio sensitivity and is more robust against chromatic dispersion for either nonreturn-to-zero or return-to-zero modulation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Kim and R.-J. Essiambre, �??Transmission of 8x20 Gb/s DQPSK signals over 310-km SMF with 0.8-b/s/Hz spectral efficiency,�?? IEEE Photon. Technol. Lett. 15, 769�??771 (2003).
    [CrossRef]
  2. R. A. Griffin, R. I. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, M. J. Wale, J. Hughes, P. A. Jerram, and N. J. Parsons, �??10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration,�?? in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper FD6-1.
  3. C. Kim and G. Li, �??Direct-detection optical differential 8-level phase-shift keying (OD8PSK) for spectrally efficient transmission,�?? Opt. Express 12, 3415�??3421 (2004), <a href="http://www.opticsexpress.org.">http://www.opticsexpress.org.</a>
    [CrossRef] [PubMed]
  4. H. Yoon, D Lee, and N. Park, �??Receiver structure of generalized M-ary optical DPSK system and its semi-analytical performance evaluation,�?? in Ninth Optoelectronics and Communications Conference and Third Conference on Optical Internet (IEEE Comunication Society, New York, 2004), paper 14C3-4.
  5. M. Ohm, �??Optical 8-DPSK and receiver with direct detection and multilevel electrical signals,�?? in IEEE/LEOS Workshop on Advanced Modulation Formats (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 45�??46
    [CrossRef]
  6. Y. Han, C. Kim, and G. Li, �??Simplified receiver implementation for optical differential 8-level phase-shift keying,�?? Electron. Lett. 40, 1372�??1373 (2004).
    [CrossRef]
  7. B. Sklar, Digital Communications: Fundamentals and Applications (Prentice-Hall, Englewood Cliffs, N.J., 1988).
  8. J. -S. Lee and C. -S. Shim, �??Bit-error-rate analysis of optically preamplified receivers using an eigenfunction expansion method in optical frequency domain,�?? J. Lightwave Technol. 12, 1224�??1229 (1994).
    [CrossRef]
  9. P. J. Winzer, S. Chandrasekhar, and H. Kim, �??Impact of filtering on RZ-DPSK reception,�?? IEEE Photon. Technol. Lett. 15, 840�??842 (2003).
    [CrossRef]
  10. J. Wang and J. M. Kahn, �??Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection,�?? J. Lightwave Technol. 22, 362�??371 (2004).
    [CrossRef]
  11. G. Santella and F. Mazzenga, �??A hybrid analytical-simulation procedure for performance evaluation in M-QAM-OFDM schemes in presence of nonlinear distortions,�?? IEEE Trans. Vehicular Technol. 47, 142�??151 (1998).
    [CrossRef]
  12. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).
  13. X. Zhang, G. Zhang, C. Xie, and L. Wang, �??Noise statistics in optically preamplified differential phase-shift keying receivers with Mach�??Zehnder interferometer demodulation,�?? Opt. Lett. 29, 337�??339 (2004).
    [CrossRef] [PubMed]

Electron. Lett.

Y. Han, C. Kim, and G. Li, �??Simplified receiver implementation for optical differential 8-level phase-shift keying,�?? Electron. Lett. 40, 1372�??1373 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

P. J. Winzer, S. Chandrasekhar, and H. Kim, �??Impact of filtering on RZ-DPSK reception,�?? IEEE Photon. Technol. Lett. 15, 840�??842 (2003).
[CrossRef]

H. Kim and R.-J. Essiambre, �??Transmission of 8x20 Gb/s DQPSK signals over 310-km SMF with 0.8-b/s/Hz spectral efficiency,�?? IEEE Photon. Technol. Lett. 15, 769�??771 (2003).
[CrossRef]

IEEE Trans. Vehicular Technol.

G. Santella and F. Mazzenga, �??A hybrid analytical-simulation procedure for performance evaluation in M-QAM-OFDM schemes in presence of nonlinear distortions,�?? IEEE Trans. Vehicular Technol. 47, 142�??151 (1998).
[CrossRef]

IEEE/LEOS Workshop

M. Ohm, �??Optical 8-DPSK and receiver with direct detection and multilevel electrical signals,�?? in IEEE/LEOS Workshop on Advanced Modulation Formats (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 45�??46
[CrossRef]

J. Lightwave Technol.

J. -S. Lee and C. -S. Shim, �??Bit-error-rate analysis of optically preamplified receivers using an eigenfunction expansion method in optical frequency domain,�?? J. Lightwave Technol. 12, 1224�??1229 (1994).
[CrossRef]

J. Wang and J. M. Kahn, �??Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection,�?? J. Lightwave Technol. 22, 362�??371 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Trends in Optics and Photonics Series

R. A. Griffin, R. I. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, M. J. Wale, J. Hughes, P. A. Jerram, and N. J. Parsons, �??10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration,�?? in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper FD6-1.

Other

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

H. Yoon, D Lee, and N. Park, �??Receiver structure of generalized M-ary optical DPSK system and its semi-analytical performance evaluation,�?? in Ninth Optoelectronics and Communications Conference and Third Conference on Optical Internet (IEEE Comunication Society, New York, 2004), paper 14C3-4.

B. Sklar, Digital Communications: Fundamentals and Applications (Prentice-Hall, Englewood Cliffs, N.J., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig 1.
Fig 1.

Implementations of optical D8PSK receiver incorporating (a) bilevel electrical decision (BL D8PSK) and (b) multilevel electrical decision (ML D8PSK)

Fig 2.
Fig 2.

Gray-coded constellations of optical D8PSK for (a) bilevel (BL) and (b) multilevel (ML) receiver. Dotted lines are optical thresholds achieved by DI; dashed ones electrical thresholds by multilevel decision circuits of ML-receiver.

Fig 3.
Fig 3.

BER vs. received OSNR in back-to-back transmission at a fixed bit rate of 40Gb/s. Lines are from KLSE with 26-1 PRBS for DQPSK and 29-1 PRBS for D8PSK; symbols from Monte-Carlo error counting method with 215-1 PRBS.

Fig 4.
Fig 4.

OSNR penalty due to optical and electrical filtering for (a) NRZ ML D8PSK, (b) RZ ML D8PSK, (c) NRZ BL D8PSK, and (d) RZ BL D8PSK.

Fig 5.
Fig 5.

Eye diagram and decision error probability between adjacent levels as a function of decision thresholds. OSNR values are 23.5dB for NRZ D8PSK and 22.4dB for RZ D8PSK

Fig 6.
Fig 6.

OSNR penalty to acquire 10 -12 BER according to the accumulated chromatic dispersion

Tables (1)

Tables Icon

Table 1. Phase decoding tables of optical D8PSK for (a) bilevel (BL) and (b) multilevel (ML) receiver; a + or - mark represents the polarity of the decision variable, and the number of marks indicates the expected signal level

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

BER [ 1 r = 1 N r ( 1 E R r ) ] log 2 M
Δ OSNR d B = 10 log 10 { 2 sin ( π 8 ) [ sin ( 3 π 8 ) sin ( π 8 ) ] 2 } = 3 ( dB )

Metrics