Abstract

The passively Q-switched laser characteristics of a quasi-three-level Yb3+:Gd3Ga5O12 (Yb3+:GGG) crystal with Cr4+:YAG saturable absorbers are studied experimentally and theoretically. The pulse parameters under different experimental conditions are measured. Some characteristics different from those of a four-level system are found. In the theoretical aspect, taking into account the spatial distributions of the pump light and intracavity laser mode, the rate equations describing the single Q-switched pulse characteristics of a quasi-three-level system are obtained. The obtained theoretical results are in fair agreement with the experimental results. Some topics such as the influence of the pumping power, the selection of the pump beam size, the optimal combination of output coupler reflectivity and saturable absorber initial transmission, the influence of the excited absorption of the saturable absorber, are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T.Taira, J.Saikawa, T.Kobayashi, R.L.Byer, �??Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,�?? IEEE J. Sel. Top. Quantum Electron. 3, 100-104 (1997).
    [CrossRef]
  2. H.W.Bruesselbach, D.S.Sumida, R.A.Reeder, R.W.Byren, �??Low-heat high-power scaling using InGaAsdiode-pumped Yb:YAG lasers,�?? IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
    [CrossRef]
  3. T.Tsira, W.M.Tulloch, R.L.Byer, �??Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,�?? Appl. Opt. 36, 1867-1874 (1997).
    [CrossRef]
  4. C.Bibeau, R.J.Beach, S.C. Mitshell, M.A.Emanuel, J.Skidmore, C.A.Ebbers, S.B.Sutton, K.S.Jancaitis, �??High-average-power 1-ìm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,�?? IEEE J. Quantum Electron. 34, 2010-2019 (1998).
    [CrossRef]
  5. J.Ye, L.S.Ma, J.L.Hall, �??High-resolution frequency standard at 1030 nm for Yb:YAG solid-state lasers,�?? J. Opt. Soc. Am. B 17, 931-931 (2000).
    [CrossRef]
  6. W.F.Krupke, �??Ytterbium solid-state lasers�??the first decade,�?? IEEE J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000).
    [CrossRef]
  7. Y.Kalisky, C.Labbe, K.Waichman, L.Kravchik, U.Rachum, P.Deng, J.Xu, J.Dong, W.Chen, �??Passively Qswitched diode-pumped Yb:YAG laser using Cr4+-doped garnets,�?? Opt. Mat. 19, 403-413 (2002).
    [CrossRef]
  8. S.Chenais, F.Balembois, F.Druon, G.L.Leclin, P.Georges, �??Thermal lensing in diode-pumped ytterbium lasers�??part �?�T : theoretical analysis and wavefront measurements,�?? IEEE J. Quantum Electron. 40, 1217-1234 (2004).
    [CrossRef]
  9. S.Chenais, F.Balembois, F.Druon, G.L.Leclin, P.Georges, �??Thermal lensing in diode-pumped ytterbium lasers�??part �?�U : evaluation of quantum efficiencies and thermo-optic coefficients,�?? IEEE J. Quantum Electron. 40, 1235-1243 (2004).
    [CrossRef]
  10. S.Chenais, F.Druon, F.Balembois, P.Georges, A.Brenier, G.Boulon, �??Diode-pumped Yb:GGG laser: conparison with Yb:GGG,�?? Opt. Mat. 22, 99-106 (2003)
    [CrossRef]
  11. J.J.Degnan, �??Optimization of passively Q-switched lasers,�?? IEEE J. Quantum Electron. 31, 1890-1901 (1995).
    [CrossRef]
  12. G.Xiao, M.Bass, �??A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,�?? IEEE J.Quantum Electron. 33, 41-44 (1997).
    [CrossRef]
  13. X.Zhang, S.Zhao, Q.Wang, Q.Zhang, L.Sun, S.Zhang, �??Optimization of Cr4+-doped saturable-absorber Qswitched lasers,�?? IEEE J. Quantum Electron. 33, 2286-2294 (1997).
    [CrossRef]
  14. X.Zhang, S.Zhao, Q.Wang, B.Ozygus, H.Weber, �??Modeling of diode-pumped actively Q-switched lasers,�?? IEEE J. Quantum Electron. 35, 1912-1918 (1999).
    [CrossRef]
  15. X.Zhang, S.Zhao, Q.Wang, B.Ozygus, H.Weber, �??Modeling of passively Q-switched lasers,�?? J. Opt. Soc. Am. B 17, 1166-175 (2000).
    [CrossRef]
  16. C.D.Nabors, �??Q-switched operation of quasi-three-level lasers,�?? IEEE J. Quantum Electron. 30, 2896-2901 (1994).
    [CrossRef]
  17. R.J.Beach, �??Optimization of quasi-three level end-pumped Q-switched lasers,�?? IEEE J. Quantum Electron. 31, 1606-1613 (1995).
    [CrossRef]
  18. X.Zhang, S.Zhao, Q.Wang,L.Sun, S.Zhang, G.Yao, Z.Zhang, �??Laser diode pumped Cr4+:YAG passively Qswitched Nd3+:S-FAP laser,�?? Opt. Commun. 155, 55-60 (1998).
    [CrossRef]
  19. L.D.Deloach, S.A.Payne, L.L.Chase, L.K.Smith, W.L.Kway, W.F.Krupke, �??Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,�?? IEEE J. Quantum Electron. 29, 1179-1191 (1993).
    [CrossRef]
  20. T.Y.Fan, R.L.Byer, �??Modeling and cw operation of a quasi-three-level 946 nm Nd:YAG laser,�?? IEEE J. Quantum Electron. 23, 605-612 (1987).
    [CrossRef]
  21. W.P.Risk, �??Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,�?? J. Opt. Soc. Am. B 5, 1412-1423 (1988).
    [CrossRef]
  22. Q.Wang, X.Zhang, P.Li, S.Zhang, H.Wang, C.Ren, �??Theory of intracavity- frequency-doubled quasi-threelevel cw lasers,�?? Science in China F 46, 381-389 (2003).
  23. X.Zhang, A.Brenier, J.Wang, H.Zhang, �??Absorption cross-sections of Cr4+:YAG at 946 and 914 nm,�?? Opt. Mat. 26, 293-296 (2004).
    [CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (10)

C.Bibeau, R.J.Beach, S.C. Mitshell, M.A.Emanuel, J.Skidmore, C.A.Ebbers, S.B.Sutton, K.S.Jancaitis, �??High-average-power 1-ìm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,�?? IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[CrossRef]

S.Chenais, F.Balembois, F.Druon, G.L.Leclin, P.Georges, �??Thermal lensing in diode-pumped ytterbium lasers�??part �?�T : theoretical analysis and wavefront measurements,�?? IEEE J. Quantum Electron. 40, 1217-1234 (2004).
[CrossRef]

S.Chenais, F.Balembois, F.Druon, G.L.Leclin, P.Georges, �??Thermal lensing in diode-pumped ytterbium lasers�??part �?�U : evaluation of quantum efficiencies and thermo-optic coefficients,�?? IEEE J. Quantum Electron. 40, 1235-1243 (2004).
[CrossRef]

J.J.Degnan, �??Optimization of passively Q-switched lasers,�?? IEEE J. Quantum Electron. 31, 1890-1901 (1995).
[CrossRef]

X.Zhang, S.Zhao, Q.Wang, Q.Zhang, L.Sun, S.Zhang, �??Optimization of Cr4+-doped saturable-absorber Qswitched lasers,�?? IEEE J. Quantum Electron. 33, 2286-2294 (1997).
[CrossRef]

X.Zhang, S.Zhao, Q.Wang, B.Ozygus, H.Weber, �??Modeling of diode-pumped actively Q-switched lasers,�?? IEEE J. Quantum Electron. 35, 1912-1918 (1999).
[CrossRef]

L.D.Deloach, S.A.Payne, L.L.Chase, L.K.Smith, W.L.Kway, W.F.Krupke, �??Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,�?? IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

T.Y.Fan, R.L.Byer, �??Modeling and cw operation of a quasi-three-level 946 nm Nd:YAG laser,�?? IEEE J. Quantum Electron. 23, 605-612 (1987).
[CrossRef]

C.D.Nabors, �??Q-switched operation of quasi-three-level lasers,�?? IEEE J. Quantum Electron. 30, 2896-2901 (1994).
[CrossRef]

R.J.Beach, �??Optimization of quasi-three level end-pumped Q-switched lasers,�?? IEEE J. Quantum Electron. 31, 1606-1613 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

W.F.Krupke, �??Ytterbium solid-state lasers�??the first decade,�?? IEEE J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000).
[CrossRef]

T.Taira, J.Saikawa, T.Kobayashi, R.L.Byer, �??Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,�?? IEEE J. Sel. Top. Quantum Electron. 3, 100-104 (1997).
[CrossRef]

H.W.Bruesselbach, D.S.Sumida, R.A.Reeder, R.W.Byren, �??Low-heat high-power scaling using InGaAsdiode-pumped Yb:YAG lasers,�?? IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

IEEE J.Quantum Electron. (1)

G.Xiao, M.Bass, �??A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,�?? IEEE J.Quantum Electron. 33, 41-44 (1997).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

X.Zhang, S.Zhao, Q.Wang,L.Sun, S.Zhang, G.Yao, Z.Zhang, �??Laser diode pumped Cr4+:YAG passively Qswitched Nd3+:S-FAP laser,�?? Opt. Commun. 155, 55-60 (1998).
[CrossRef]

Opt. Mat. (3)

X.Zhang, A.Brenier, J.Wang, H.Zhang, �??Absorption cross-sections of Cr4+:YAG at 946 and 914 nm,�?? Opt. Mat. 26, 293-296 (2004).
[CrossRef]

Y.Kalisky, C.Labbe, K.Waichman, L.Kravchik, U.Rachum, P.Deng, J.Xu, J.Dong, W.Chen, �??Passively Qswitched diode-pumped Yb:YAG laser using Cr4+-doped garnets,�?? Opt. Mat. 19, 403-413 (2002).
[CrossRef]

S.Chenais, F.Druon, F.Balembois, P.Georges, A.Brenier, G.Boulon, �??Diode-pumped Yb:GGG laser: conparison with Yb:GGG,�?? Opt. Mat. 22, 99-106 (2003)
[CrossRef]

Science in China F (1)

Q.Wang, X.Zhang, P.Li, S.Zhang, H.Wang, C.Ren, �??Theory of intracavity- frequency-doubled quasi-threelevel cw lasers,�?? Science in China F 46, 381-389 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Scheme of the experimental setup.

Fig. 2.
Fig. 2.

The variation of the pulse width with the absorbed pump power.

Fig. 3.
Fig. 3.

The variation of the pulse energy with the absorbed pump power.

Fig. 4.
Fig. 4.

The variation of the pulse repetition rate with the absorbed pump power.

Fig. 5.
Fig. 5.

The variation of the average output power with the absorbed pump power.

Fig. 6.
Fig. 6.

Related energy levels of Yb3+.

Fig. 7.
Fig. 7.

The variation of the pulse energy with the reabsorption.

Fig. 8.
Fig. 8.

The variation of the pulse width with the reabsorption.

Fig. 9.
Fig. 9.

The variation of the pulse energy with the dissipative loss.

Fig. 10.
Fig. 10.

The variation of the pulse width with the dissipative loss.

Fig. 11.
Fig. 11.

The relation between output pulse energy and R for different given ln(1/R)+ln(1/:T02)+L in the case of 2σ n a0 l = 0.08, L = 0.02 and ωp , = ωL . From top to bottom, ln(1/R)+ln(1/:T02)+L is 0.22, 0.20, 0.18, 0.16, 0.14, respectively.

Fig. 12.
Fig. 12.

The variation of the pulse energy with σ esa/σ gsa.

Tables (2)

Tables Icon

Table 1. Comparison between the experimental results and the theoretical results of the Cr4+:YAG passively Q-switched Yb3+:GGG laser

Tables Icon

Table 2. Some possible optimal combinations of R and T0

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

n a 0 = f a n 0 .
d n a r t d t = f a σc [ n b r t n a r t ] ϕ r t ,
d n b r t d t = f b σc [ n b r t n a r t ] ϕ r t .
0 d ϕ r t d t 2 πrdr = 0 ϕ r t t r { 2 σ [ n b r t n a r t ] l
2 σ gsa n s 1 r t l s 2 σ esa [ n s 0 n s 1 r t l s ln ( 1 R ) L } 2 πrdr ,
d n s 1 r t d t = S g S s σ gsa r t n s 1 r t .
n a r 0 = n a 0 ,
n b r 0 = n b 0,0 exp ( 2 r 2 ω p 2 ) ,
ϕ r 0 10 4 ϕ m r t ,
n s 1 r 0 = n s 0
ϕ r t = ϕ 0 t exp ( 2 r 2 ω L 2 ) ,
n b r t n a r t = [ n b 0,0 exp ( 2 r 2 ω p 2 ) n a 0 ]
× exp [ γσc exp ( 2 r 2 ω L 2 ) 0 t ϕ 0 t d t ] ,
n s 1 r t = n s 0 exp [ S g S s σ gsa c exp ( 2 r 2 ω L 2 ) 0 t ϕ 0 t d t ] .
d ϕ 0 t d t = 4 σlϕ 0 t ω L 2 t r 0 [ n b 0,0 exp ( 2 r 2 ω p 2 ) n a 0 ] exp ( 2 r 2 ω L 2 )
× exp [ γσc exp ( 2 r 2 ω L 2 ) 0 t ϕ 0 t d t ] 2 r d r
4 ( σ gsa σ esa ) n s 0 l s ϕ 0 t ω L 2 t r
× 0 exp [ S g S s σ gsa c exp ( 2 r 2 ω L 2 ) 0 t ϕ 0 t d t ] exp ( 2 r 2 ω L 2 ) 2 r d r
ϕ 0 t t r [ ln ( 1 R ) + ( σ esa σ gsa ) ln ( 1 T 0 2 ) + L ] ,
T 0 = exp ( σ gsa n s 0 l s ) .
n b 0,0 = ln ( 1 R ) + ln ( 1 T 0 2 ) + L + 2 σ n a 0 l 2 σl ( 1 + ω L 2 ω p 2 ) .
E = π ω L 2 chv 4 ln ( 1 R ) 0 ϕ 0 t d t
P pumpth = η ( ω p 2 + ω L 2 ) ln ( 1 R ) + ln ( 1 T 0 2 ) + L + 2 σ n a 0 l 2 σl ,

Metrics