Abstract

Light passing through a photonic crystal can undergo a negative or a positive refraction. The two refraction states can be functions of the contrast index, the incident angle and the slab thickness. By suitably using these properties it is possible to realize very simple and very efficient optical components to route the light. As an example we present a passive device acting as a polarizing beam splitter where TM polarization is refracted in positive direction whereas TE component is negatively refracted.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. J.D. Joannopulos, R.D. Mead, J.N. Winn, Photonic crystal: Molding the flow of light, Princeton University Press (Princeton, 1995).
  2. K. Sakoda, Optical Properties of Photonic Crystals, Springer Verlag (2001).
  3. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Superprism phenomena in photonic crystals,�?? Phys. Rev. B 58, R10 096-099 (1998).
  4. M. Notomi. "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
    [CrossRef]
  5. F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner and U. Gösele, �??Large birefringence in twodimensional silicon photonic crystals,�?? Phys. Rev. B 63, 161101 (2001).
    [CrossRef]
  6. Lijun Wu, M. Mazilu, J.-F. Gallet and T. F. Krauss, "Dual lattice photonic-crystal beam splitters," Appl. Phys. Lett. 86, 211106, (2005).
    [CrossRef]
  7. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney and M. Mansuripur, �??Design of a Compact Photonic- Crystal-Based Polarizing Beam Splitter,�?? IEEE Photonics Technol. Lett., 17, 1435-1437 (2005).
  8. C. Y. Luo, S. G. Johnson and J. D. Joannopoulos. "All-angle negative refraction in a three-dimensionally periodic photonic crystal," Appl. Phys. Lett. 81, 2352-2354 (2002).
    [CrossRef]
  9. E. Cubukcu, K. Aydin, et al. "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).
  10. J. B. Pendry and D. R. Smith. "Reversing light with negative refraction,�?? Physics Today 57, 37-43 (2004).
  11. S Anantha Ramakrishna, �??Physics of negative refractive index materials,�?? Rep. Prog. Phys. 68, 449�??521 (2005).
    [CrossRef]
  12. V. Mocella, "Negative refraction in Photonic Crystals: thickness dependence and Pendellösung phenomenon," Opt. Express 13, 1361-1367 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1361">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1361</a>.
    [CrossRef]
  13. B. W. Battermann, H. Cole, �??Dynamical diffraction theory of X rays by perfect crystals,�?? Rev. Mod. Phys. 36, 681-717 (1964).
    [CrossRef]
  14. P.P. Ewald, �??Crystal optics for visible light and X rays,�?? Rev. Mod. Physics 37, 46-56 (1965).
  15. G.S. Agarwal, D. N. Pattanyak, E. Wolf, "Electromagnetic field in spatially dispersive media," Phys. Rev. B, 10, 1447-1475 (1974).
    [CrossRef]
  16. K. Henneberger, "Additional Boundary Condition: an historical mistake," Phys. Rev. Lett. 80, 2889-2892, (1998).
    [CrossRef]
  17. J.J. Hopefield, D.G. Thomas, �??Theoretical and Experimental Effects of Spatial Dispersion on the Optical Properties of Crystals,�?? Phys. Rev. 123, 563-572 (1963).

Appl. Phys. Lett.

C. Y. Luo, S. G. Johnson and J. D. Joannopoulos. "All-angle negative refraction in a three-dimensionally periodic photonic crystal," Appl. Phys. Lett. 81, 2352-2354 (2002).
[CrossRef]

Lijun Wu, M. Mazilu, J.-F. Gallet and T. F. Krauss, "Dual lattice photonic-crystal beam splitters," Appl. Phys. Lett. 86, 211106, (2005).
[CrossRef]

IEEE Photonics Technol.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney and M. Mansuripur, �??Design of a Compact Photonic- Crystal-Based Polarizing Beam Splitter,�?? IEEE Photonics Technol. Lett., 17, 1435-1437 (2005).

Nature

E. Cubukcu, K. Aydin, et al. "Negative refraction by photonic crystals," Nature 423, 604-605 (2003).

Opt. Express

Phys. Rev.

J.J. Hopefield, D.G. Thomas, �??Theoretical and Experimental Effects of Spatial Dispersion on the Optical Properties of Crystals,�?? Phys. Rev. 123, 563-572 (1963).

Phys. Rev. B

G.S. Agarwal, D. N. Pattanyak, E. Wolf, "Electromagnetic field in spatially dispersive media," Phys. Rev. B, 10, 1447-1475 (1974).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Superprism phenomena in photonic crystals,�?? Phys. Rev. B 58, R10 096-099 (1998).

M. Notomi. "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner and U. Gösele, �??Large birefringence in twodimensional silicon photonic crystals,�?? Phys. Rev. B 63, 161101 (2001).
[CrossRef]

Phys. Rev. Lett.

K. Henneberger, "Additional Boundary Condition: an historical mistake," Phys. Rev. Lett. 80, 2889-2892, (1998).
[CrossRef]

Physics Today

J. B. Pendry and D. R. Smith. "Reversing light with negative refraction,�?? Physics Today 57, 37-43 (2004).

Rep. Prog. Phys.

S Anantha Ramakrishna, �??Physics of negative refractive index materials,�?? Rep. Prog. Phys. 68, 449�??521 (2005).
[CrossRef]

Rev. Mod. Phys.

B. W. Battermann, H. Cole, �??Dynamical diffraction theory of X rays by perfect crystals,�?? Rev. Mod. Phys. 36, 681-717 (1964).
[CrossRef]

Rev. Mod. Physics

P.P. Ewald, �??Crystal optics for visible light and X rays,�?? Rev. Mod. Physics 37, 46-56 (1965).

Other

J.D. Joannopulos, R.D. Mead, J.N. Winn, Photonic crystal: Molding the flow of light, Princeton University Press (Princeton, 1995).

K. Sakoda, Optical Properties of Photonic Crystals, Springer Verlag (2001).

Supplementary Material (1)

» Media 1: MOV (2484 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics