Abstract

We propose a low-background and sensitive coherent Raman imaging technique that uses selective excitation of Raman levels with chirped pulses from a single femtosecond laser. The proposed scheme uses spectral interferometric detection to obtain the real and imaginary parts of χ (3) simultaneously. We combine three advantages desirable for microscopy namely, use of a single femtosecond laser, suppression of non-resonant background, and measurement of complex resonant Raman χ (3).

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Gershgoren, R. A. Bartels, J. T. Fourkas, R. Tobey, M. M. Murnane, and H. C. Kapteyn, �??Simplified setup for high-resolution spectroscopy that uses ultrashort pulses.�?? Opt. Lett. 28, 361-363 (2003).
    [CrossRef] [PubMed]
  2. A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, �??Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas.�?? Appl. Phys. Lett. 64, 137-139 (1994).
    [CrossRef]
  3. N. Dudovich, D. Oron, and Y. Silberberg, �??Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy.�?? Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  4. D. Oron, N. Dudovich, and Y. Silberberg, �??Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,�?? Phys. Rev. Lett. 90, 213902 (2003).
    [CrossRef] [PubMed]
  5. C. L. Evans, E. O. Potma, and X. S. N. Xie, �??Coherent anti-Stokes Raman scattering spectral interferometry: Determination of the real and imaginary components of nonlinear susceptibility chisup (3) for vibrational microscopy,�?? Opt. Lett. 29, 2923-2925 (2004).
    [CrossRef]
  6. E. M. Vartiainen, K. E. Peiponen, and T. Tsuboi, �??Analysis of coherent Raman spectra.�?? J. Opt. Soc. Am. B 7, 722-725 (1990).
    [CrossRef]
  7. D. L. Marks and S. A. Boppart, �??Nonlinear interferometric vibrational imaging.�?? Phys. Rev. Lett. 92, 123905 (2004).
    [CrossRef] [PubMed]
  8. D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, �??Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes.�?? Appl. Phys. Lett. 85, 5787 -5789 (2004).
    [CrossRef]
  9. A. C. Eckbreth and T. J. Anderson, �??Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation.�?? Opt. Lett. 11, 496-498 (1986).
    [CrossRef] [PubMed]
  10. J. B. Zheng, A. Leipertz, J. B. Snow, and R. K. Chang, �??Simultaneous observation of rotational coherent Stokes Raman scattering and coherent anti-Stokes Raman scattering in air and nitrogen.�?? Opt. Lett. 8, 350-352 (1983).
    [CrossRef] [PubMed]
  11. D. Gabor, �??A New Microscopic Principle,�?? Nature 161, 777-778 (1948).
    [CrossRef] [PubMed]
  12. W. Press, B. Flannery, S. Teukosky, and W. Vetterling, Numerical Recepies - The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986).

Appl. Phys. Lett.

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, �??Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas.�?? Appl. Phys. Lett. 64, 137-139 (1994).
[CrossRef]

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, �??Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes.�?? Appl. Phys. Lett. 85, 5787 -5789 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Nature

N. Dudovich, D. Oron, and Y. Silberberg, �??Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy.�?? Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

D. Gabor, �??A New Microscopic Principle,�?? Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

D. L. Marks and S. A. Boppart, �??Nonlinear interferometric vibrational imaging.�?? Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, �??Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,�?? Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

Other

W. Press, B. Flannery, S. Teukosky, and W. Vetterling, Numerical Recepies - The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Energy level diagram in coherent Raman spectroscopy.

Fig. 2.
Fig. 2.

Schematic of spectral interferometric coherent Raman imaging (SIRI) setup. BS, beam splitter; SHG, second harmonic generation crystal.

Fig. 3.
Fig. 3.

Polarizations of the input electric fields (E 1,2,3) in the SIRI instrument. The excitation pulses (E 1,2) and probe (E 3) are polarized at an angle (optimum angle depends on the χ (3) coefficients of the sample) to each other. The input polarizer is oriented along the unprimed x-axis and the output analyzer is along the primed y-axis.

Fig. 4.
Fig. 4.

(a) Spectral interferogram of the reference with the Raman signal, (b) spectrogram of the Raman signal, (c) and (d) real and imaginary parts of Raman susceptibility used in the simulations, (e) and (f) selectively recovered susceptibility using (a) and (b). (g) and (h) Reconstructed susceptibility by scanning the delay.

Fig. 5.
Fig. 5.

Comparison of original (solid lines) and recovered (dashed lines) susceptibility in presence of a large background. The ratio of non-resonant background to Raman signal is 50 in (a) and (b) and 250 in (c) and (d). The recovered function matches closely within the excitation region.

Fig. 6.
Fig. 6.

Red colored area is assigned a Raman active mode at 625 cm-1 while the yellow area is Raman active at 682 cm-1. Green region is Raman active at both the frequencies. (a) Original image (b) 50 times stronger (than peak Raman signal) background, (c) recovered image via selective excitation.

Fig. 7.
Fig. 7.

Illustration of distortion effects due to a nonlinear chirp. Oscillator pulses are dispersed (using second and third order dispersion) by 10 cm of fused silica. (a)-(b) Original, (c)-(d) recovered χ (3) when the excitation is tuned to 159 cm-1, and (e)-(f) χ (3) reconstructed by scanning the delay.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E y ( 3 ) ( ω 3 ) = 0 d Ω E 3 x ( ω 3 Ω ) χ yxxy ( 3 ) ( Ω ) × 0 d ω 1 E 1 x ( ω 1 + Ω ) E 2 y * ( Ω 1 ) .
I ( ω 3 ) = E y′ ( 3 ) ( ω 3 ) + E 2 y′ ( ω 3 ) 2 ,
E y ( 3 ) ( ω 3 ) + r E 3 x ( ω 3 ) 2 .
I ( ω 3 ) E y ( 3 ) ( ω 3 ) 2 = r E 3 x ( ω 3 ) 2 + r E y ( 3 ) ( ω 3 ) E 3 x * ( ω 3 ) + r E y ( 3 ) * ( ω 3 ) E 3 x ( ω 3 ) ,
Δ I ( ω 3 ) = r E 3 x ( ω 3 ) 2 + Δ I + ( ω 3 ) + Δ I ( ω 3 ) .
Δ I ± ( ω 3 ) = r ( E 3 x * ( ω 3 ) E y ( 3 ) ( ω 3 ) + E 3 x ( ω 3 ) E y ( 3 ) * ( ω 3 ) ) ±
= r ( E 3 x * ( ω 3 ) E y ( 3 ) ± ( ω 3 ) + E 3 x ( ω 3 ) E y ( 3 ) * ( ω 3 ) ) .
Δ I + = B + χ yxxy ( 3 ) + + B χ yxxy ( 3 ) * .
B ω 3 , Ω + = E 3 x * ( ω 3 ) E 3 x ( ω 3 Ω ) G + ( Ω ) ,
B ω 3 , Ω = E 3 x ( ω 3 ) E 3 x * ( ω 3 Ω ) G * ( Ω ) .
G ( Ω ) = 0 d ω 1 E 1 x ( ω 1 + Ω ) E 2 y * ( ω 1 ) .
Δ I + = ( B + + B M ) χ yxxy ( 3 ) + .
χ yxxy ( 3 ) = χ yxxy ( 3 ) + + χ yxxy ( 3 ) = χ yxxy ( 3 ) + + M χ yxxy ( 3 ) + * .
Δ I T + = B T χ yxxy ( 3 ) + ,
Δ I + B χ nr , yxxy ( 3 ) + = B χ r , yxxy ( 3 ) +

Metrics