Abstract

We report on the observation of diffusion-dominant pho-torefraction and light-induced nonlinear backward scattering in highly Mg-doped LiNbO3 at 351 nm. We also demonstrate what we believe to be the first continuous-wave self-pumped phase conjugation via stimulated photorefractive backscattering in the ultraviolet.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Arizmendi, �??Photonic applications of lithium niobate crystals,�?? Phys. Stat. Sol.(a) 201, 253 (2004).
    [CrossRef]
  2. J. Xu, G. Zhang, F. Li, X. Zhang, Q. Sun, S. Liu, F. Song, Y. Kong, X. Chen, H. Qiao, J. Yao, and L. Zhao, �??Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals,�?? Opt. Lett. 25, 129 (2000).
    [CrossRef]
  3. H. Qiao, J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, �??Ultraviolet photorefractivity features in doped lithium niobate crystals,�?? Phys. Rev. B 70, 094101 (2004).
    [CrossRef]
  4. G. Zhang and Y. Tomita, �??Ultraviolet-light-induced near-infrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,�?? J. Appl. Phys. 93, 9456 (2003).
    [CrossRef]
  5. Y. Tomita, S. Sunarno, and G. Zhang, �??Ultraviolet-light-gating two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3,�?? J. Opt. Soc. Am. B 21, 753 (2004).
    [CrossRef]
  6. F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Wurtz, and D. Hilgenberg, �??Photorefraction in the ultraviolet: Materials and effects,�?? Appl. Phys. B 61, 351 (1995).
    [CrossRef]
  7. M. A. Ellabban, G. Mandula, M. Fally, R. A. Rupp, and L. Kovács, �??Holographic scattering as a technique to determine the activation energy for thermal fixing in photorefractive materials,�?? Appl. Phys. Lett. 78, 844 (2001).
    [CrossRef]
  8. J. Feinberg, �??Asymmetric self-defocusing of an optical beam from the photorefractive effect,�?? J. Opt. Soc. Am. 72, 46 (1982).
    [CrossRef]
  9. M. A. Ellabban, Th. Woike, M. Fally, and R. A. Rupp, �??Holographic scattering in the ultraviolet spectral range in iron doped lithium niobate,�?? Europhys. Lett. 70, 471 (2005).
    [CrossRef]
  10. T. Y. Chang and R. W. Hellwarth, �??Optical phase conjugation by backscattering in barium titanate,�?? Opt. Lett. 10, 408 (1985).
    [CrossRef] [PubMed]
  11. V. I. Vinokurov and V. V. Shkunov, �??Theory of phase selfconjugation in unsteady stimulated backscattering in photorefractive crystals,�?? Sov. Phys. JETP 70, 839 (1990).
  12. G. C. Valley, �??Evolution of phase-conjugate waves in stimulated photorefractive backscattering,�?? J. Opt. Soc. Am. B 9, 1440 (1992).
    [CrossRef]
  13. Q. Wu, J. Xu, Q. Sun, X. Zhang, H. Qiao, B. Tang, and G. Zhang, �??Light-induced backward scattering in LiNbO3:Fe,Zn,�?? Appl. Phys. Lett. 81, 4691 (2002).
    [CrossRef]
  14. D. A. Bryan, R. Gerson, and H. E. Tomaschke, �??Increased optical damage resistance in lithium niobate,�?? Appl. Phys. Lett. 44, 847 (1984).
    [CrossRef]
  15. G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, �??LiNbO3: An efficient phase matchable nonlinear optical material,�?? Appl. Phys. Lett. 5, 234 (1964).
    [CrossRef]
  16. G. Zhang, Q. Li, P. Ho, S. Liu, Z. Wu, and R. R. Alfano, �??Dependence of specklon size on the laser beam size via photo-induced light scattering in LiNbO3:Fe,�?? Appl. Opt. 25, 2955 (1986).
    [CrossRef] [PubMed]
  17. V. V. Obukhovskiiv, A. V. Stoyanov, and V. V. Lemeshko, �??Photoinduced scattering of light by fluctuation of photoelectric parameters of a medium,�?? Sov. J. Quantum Electron. 17, 64 (1987).
    [CrossRef]
  18. B. Y. Zel�??dovich, V. L. Popovichev, V. V. Ragul�??skii, and F. S. Faisullov, �??Connection between the wave fronts of the reflected and exciting light in stimulated mandel�??shtam-Brillouin scattering,�?? Sov. Phys. JETP Lett. 15, 109(1972).
  19. A. Yariv, �??Two-beam coupling, amplification, and phase conjugation by stimulated Brillouin scattering,�?? in Optical Electronics, 4th ed., (Saunders College Publishing, New York, 1991), pp. 670-684.

Appl. Opt. (1)

G. Zhang, Q. Li, P. Ho, S. Liu, Z. Wu, and R. R. Alfano, �??Dependence of specklon size on the laser beam size via photo-induced light scattering in LiNbO3:Fe,�?? Appl. Opt. 25, 2955 (1986).
[CrossRef] [PubMed]

Appl. Phys. B (1)

F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Wurtz, and D. Hilgenberg, �??Photorefraction in the ultraviolet: Materials and effects,�?? Appl. Phys. B 61, 351 (1995).
[CrossRef]

Appl. Phys. Lett. (4)

M. A. Ellabban, G. Mandula, M. Fally, R. A. Rupp, and L. Kovács, �??Holographic scattering as a technique to determine the activation energy for thermal fixing in photorefractive materials,�?? Appl. Phys. Lett. 78, 844 (2001).
[CrossRef]

Q. Wu, J. Xu, Q. Sun, X. Zhang, H. Qiao, B. Tang, and G. Zhang, �??Light-induced backward scattering in LiNbO3:Fe,Zn,�?? Appl. Phys. Lett. 81, 4691 (2002).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, �??Increased optical damage resistance in lithium niobate,�?? Appl. Phys. Lett. 44, 847 (1984).
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, �??LiNbO3: An efficient phase matchable nonlinear optical material,�?? Appl. Phys. Lett. 5, 234 (1964).
[CrossRef]

Europhys. Lett. (1)

M. A. Ellabban, Th. Woike, M. Fally, and R. A. Rupp, �??Holographic scattering in the ultraviolet spectral range in iron doped lithium niobate,�?? Europhys. Lett. 70, 471 (2005).
[CrossRef]

J. Appl. Phys. (1)

G. Zhang and Y. Tomita, �??Ultraviolet-light-induced near-infrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,�?? J. Appl. Phys. 93, 9456 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Phys. Rev. B (1)

H. Qiao, J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, �??Ultraviolet photorefractivity features in doped lithium niobate crystals,�?? Phys. Rev. B 70, 094101 (2004).
[CrossRef]

Phys. Stat. Sol. (1)

L. Arizmendi, �??Photonic applications of lithium niobate crystals,�?? Phys. Stat. Sol.(a) 201, 253 (2004).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. V. Obukhovskiiv, A. V. Stoyanov, and V. V. Lemeshko, �??Photoinduced scattering of light by fluctuation of photoelectric parameters of a medium,�?? Sov. J. Quantum Electron. 17, 64 (1987).
[CrossRef]

Sov. Phys. JETP (1)

V. I. Vinokurov and V. V. Shkunov, �??Theory of phase selfconjugation in unsteady stimulated backscattering in photorefractive crystals,�?? Sov. Phys. JETP 70, 839 (1990).

Sov. Phys. JETP Lett. (1)

B. Y. Zel�??dovich, V. L. Popovichev, V. V. Ragul�??skii, and F. S. Faisullov, �??Connection between the wave fronts of the reflected and exciting light in stimulated mandel�??shtam-Brillouin scattering,�?? Sov. Phys. JETP Lett. 15, 109(1972).

Other (1)

A. Yariv, �??Two-beam coupling, amplification, and phase conjugation by stimulated Brillouin scattering,�?? in Optical Electronics, 4th ed., (Saunders College Publishing, New York, 1991), pp. 670-684.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Unidirectional photorefractive forward scattering pattern in LiNbO3:Mg at a wavelength of 351 nm.

Fig. 2.
Fig. 2.

Experimental configuration to measure photorefractive backscattering. L1,L2, convex lenses; BS, beam splitter; D, phase distorter; S, observation screen.

Fig. 3.
Fig. 3.

Time evolution of backward scattered light at several incident powers. Incident powers of 0.48, 1.74, 4.15, 8.24 and 19 mW corresponds to 12, 44, 106, 210 and 483 kW/cm2 at the focal point, respectively. The sample was placed at z 0 = -0.2 cm.

Fig. 4.
Fig. 4.

Backward scattered speckle patterns at different positions z 0 with the incident intensity of 483 kW/cm2 at the focal point.

Fig. 5.
Fig. 5.

Demonstration of the distortion-correction capacity in self-pumped phase conjugation by photorefractive backscattering. (a) the single spot beam without the distorter D, (b) the distortion-corrected beam after double passing through the phase distorter D, and (c) the beam after doubly passing through the phase distorter D when a mirror, instead of the sample, is placed at the focal point.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

gkl ( z ) = ie A d r f 0 ( r , z ) 2 f k * ( r , z ) f l ( r , z ) ,

Metrics