Abstract

We have experimentally studied emission of microwave radiation from a monopole source embedded in a three-dimensional photonic crystal. We have demonstrated enhancement of microwave radiation at the band edge and cavity mode frequencies. Furthermore, we have shown that it is possible to obtain highly directive microwave radiation sources operating at the band edge of the three-dimensional photonic crystal. We have measured half power beam widths of 13° for both E and H planes, corresponding to a maximum directivity of 245.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    [Crossref] [PubMed]
  2. E. Yablonovitch,“Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    [Crossref] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995.).
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Optical Properties of an Ionic-Type Phononic Crystal,” Science 284, 1819 (1999).
    [Crossref] [PubMed]
  5. B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
    [Crossref]
  6. K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,” Phys. Rev. Lett. 83, 967 (1999).
    [Crossref]
  7. F. De Martini, M. Marrocco, P. Mataloni, and D. Murra, “Spontaneous and stimulated emission in the threshold-less microlaser,” J. Opt. Soc. Am. B 10, 360 (1993).
    [Crossref]
  8. P. R. Villenevue, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodjeski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).
    [Crossref]
  9. P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687 (1994).
    [Crossref]
  10. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
    [Crossref]
  11. E. R. Brown, C. D. Parker, and E. Yablonovitch, “Radiation properties of a planar antenna on a photonic-crystal substrate,” J. Opt. Soc. Am. B 10, 404 (1993).
    [Crossref]
  12. K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
    [Crossref]
  13. V. Lousse, J. Vigneron, X. Bouju, and J. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104 (2001).
    [Crossref]
  14. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E 63, 046612 (2001).
    [Crossref]
  15. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
    [Crossref] [PubMed]
  16. D. N. Chigrin, “Radiation pattern of a classical dipole in a photonic crystal: Photon focusing,” Phys. Rev. E 70, 056611 (2004).
    [Crossref]
  17. B. Taylor, H. J. Maris, and C. Elbaum, “Phonon Focusing in Solids,” Phys. Rev. Lett. 23, 416 (1969).
    [Crossref]
  18. E. R. Brown and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300 (1996).
    [Crossref]
  19. R. Gonzalo, P. de Maagt, and M. Sorolla, “Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates,” IEEE Trans. Microwave Theory Tech. 47 (11), 2131 (1999).
    [Crossref]
  20. I. Bulu, H. Caglayan, and E. Ozbay, “Highly directive radiation from sources embedded inside photonic crystals,” Appl. Phys. Lett. 83, 3263 (2003).
    [Crossref]
  21. I. Bulu, H. Caglayan, and E. Ozbay, “Radiation properties of sources inside photonic crystals,” Phys. Rev. B 67, 205103 (2003).
    [Crossref]
  22. M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, R2247–R2250 (2000).
    [Crossref]
  23. S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
    [Crossref]
  24. T. Kondo, M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, “Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy,” Phys. Rev. B 66, 033111 (2002).
    [Crossref]
  25. K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
    [Crossref]
  26. K. Ohtaka, J. Inoue, and S. Yamaguti, “Derivation of the density of states of leaky photonic bands,” Phys. Rev. B 70, 035109 (2004).
    [Crossref]
  27. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Germany, 2001).
  28. K. Sakoda and K. Ohtaka, “Optical response of three-dimensional photonic lattices: Solutions of inhomogeneous Maxwell’s equations and their applications,” Phys. Rev. B 54, 5732 (1996).
    [Crossref]
  29. M. Wubs and A. Lagendijk, “Local optical density of states in finite crystals of plane scatterers,” Phys. Rev. E 65, 046612 (2002).
    [Crossref]
  30. E. Ozbay, “Layer-by-layer photonic crystals from microwave to far-infrared frequencies,” J. Opt. Soc. Am. B 13, 1945 (1996).
    [Crossref]
  31. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).
    [Crossref]
  32. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945 (1994).
    [Crossref]
  33. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science,  289, 604 (2000).
    [Crossref] [PubMed]
  34. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Control of Light Emission by 3D Photonic Crystals,” Science 305, 227 (2004).
    [Crossref] [PubMed]
  35. S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J.Quantum Electron. 38(7), 726 (2002).
    [Crossref]
  36. M. Okano, A. Chutinan, and S. Noda, “Analysis and design of single-defect cavities in a three-dimensional photonic crystal,” Phys. Rev. B 66, 165211 (2002).
    [Crossref]
  37. E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band-gap crystal,” Phys. Rev. B 51, 13961 (1995).
    [Crossref]
  38. B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376 (1998).
    [Crossref]
  39. M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Micro. Opt. Tech. Lett.,  23, 56 (1999).
    [Crossref]
  40. H. Park, J. Hwang, J. Huh, H. Ryu, S. Kim, J. Kim, and Y. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J.Quantum Electron. 38 (10), 1353 (2002).
    [Crossref]
  41. M. Agio, E. Lidorikis, and C. M. Soukoulis, “Impurity modes in a two-dimensional photonic crystal: coupling efficiency and Q factor,” J. Opt. Soc. Am. B 17 (12), 2037 (2000).
    [Crossref]
  42. S. Enoch, B. Gralak, and G. Tayeb, “Enhanced emission with angular confinement from photonic crystals,” App. Phys. Lett. 81 (9), 1588 (2002).
    [Crossref]
  43. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).

2004 (3)

D. N. Chigrin, “Radiation pattern of a classical dipole in a photonic crystal: Photon focusing,” Phys. Rev. E 70, 056611 (2004).
[Crossref]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Control of Light Emission by 3D Photonic Crystals,” Science 305, 227 (2004).
[Crossref] [PubMed]

K. Ohtaka, J. Inoue, and S. Yamaguti, “Derivation of the density of states of leaky photonic bands,” Phys. Rev. B 70, 035109 (2004).
[Crossref]

2003 (2)

I. Bulu, H. Caglayan, and E. Ozbay, “Highly directive radiation from sources embedded inside photonic crystals,” Appl. Phys. Lett. 83, 3263 (2003).
[Crossref]

I. Bulu, H. Caglayan, and E. Ozbay, “Radiation properties of sources inside photonic crystals,” Phys. Rev. B 67, 205103 (2003).
[Crossref]

2002 (7)

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

T. Kondo, M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, “Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy,” Phys. Rev. B 66, 033111 (2002).
[Crossref]

M. Wubs and A. Lagendijk, “Local optical density of states in finite crystals of plane scatterers,” Phys. Rev. E 65, 046612 (2002).
[Crossref]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J.Quantum Electron. 38(7), 726 (2002).
[Crossref]

M. Okano, A. Chutinan, and S. Noda, “Analysis and design of single-defect cavities in a three-dimensional photonic crystal,” Phys. Rev. B 66, 165211 (2002).
[Crossref]

H. Park, J. Hwang, J. Huh, H. Ryu, S. Kim, J. Kim, and Y. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J.Quantum Electron. 38 (10), 1353 (2002).
[Crossref]

S. Enoch, B. Gralak, and G. Tayeb, “Enhanced emission with angular confinement from photonic crystals,” App. Phys. Lett. 81 (9), 1588 (2002).
[Crossref]

2001 (2)

V. Lousse, J. Vigneron, X. Bouju, and J. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104 (2001).
[Crossref]

A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E 63, 046612 (2001).
[Crossref]

2000 (6)

K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
[Crossref]

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science,  289, 604 (2000).
[Crossref] [PubMed]

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
[Crossref]

M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, R2247–R2250 (2000).
[Crossref]

M. Agio, E. Lidorikis, and C. M. Soukoulis, “Impurity modes in a two-dimensional photonic crystal: coupling efficiency and Q factor,” J. Opt. Soc. Am. B 17 (12), 2037 (2000).
[Crossref]

1999 (4)

M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Micro. Opt. Tech. Lett.,  23, 56 (1999).
[Crossref]

K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,” Phys. Rev. Lett. 83, 967 (1999).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Optical Properties of an Ionic-Type Phononic Crystal,” Science 284, 1819 (1999).
[Crossref] [PubMed]

R. Gonzalo, P. de Maagt, and M. Sorolla, “Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates,” IEEE Trans. Microwave Theory Tech. 47 (11), 2131 (1999).
[Crossref]

1998 (1)

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376 (1998).
[Crossref]

1996 (3)

K. Sakoda and K. Ohtaka, “Optical response of three-dimensional photonic lattices: Solutions of inhomogeneous Maxwell’s equations and their applications,” Phys. Rev. B 54, 5732 (1996).
[Crossref]

E. Ozbay, “Layer-by-layer photonic crystals from microwave to far-infrared frequencies,” J. Opt. Soc. Am. B 13, 1945 (1996).
[Crossref]

E. R. Brown and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300 (1996).
[Crossref]

1995 (2)

P. R. Villenevue, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodjeski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).
[Crossref]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band-gap crystal,” Phys. Rev. B 51, 13961 (1995).
[Crossref]

1994 (5)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945 (1994).
[Crossref]

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687 (1994).
[Crossref]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
[Crossref]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[Crossref] [PubMed]

1993 (2)

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

E. Yablonovitch,“Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

1969 (1)

B. Taylor, H. J. Maris, and C. Elbaum, “Phonon Focusing in Solids,” Phys. Rev. Lett. 23, 416 (1969).
[Crossref]

Abeyta, A.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945 (1994).
[Crossref]

Agio, M.

Asatryan, A.

A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E 63, 046612 (2001).
[Crossref]

Bae, J. S.

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
[Crossref]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).

Bayindir, M.

M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, R2247–R2250 (2000).
[Crossref]

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

Biswas, R.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Micro. Opt. Tech. Lett.,  23, 56 (1999).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945 (1994).
[Crossref]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
[Crossref]

Botten, L. C.

A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E 63, 046612 (2001).
[Crossref]

Bouju, X.

V. Lousse, J. Vigneron, X. Bouju, and J. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104 (2001).
[Crossref]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
[Crossref]

Brennan, T. M.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687 (1994).
[Crossref]

Brown, E. R.

E. R. Brown and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300 (1996).
[Crossref]

E. R. Brown, C. D. Parker, and E. Yablonovitch, “Radiation properties of a planar antenna on a photonic-crystal substrate,” J. Opt. Soc. Am. B 10, 404 (1993).
[Crossref]

Bulu, I.

I. Bulu, H. Caglayan, and E. Ozbay, “Highly directive radiation from sources embedded inside photonic crystals,” Appl. Phys. Lett. 83, 3263 (2003).
[Crossref]

I. Bulu, H. Caglayan, and E. Ozbay, “Radiation properties of sources inside photonic crystals,” Phys. Rev. B 67, 205103 (2003).
[Crossref]

Busch, K.

A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E 63, 046612 (2001).
[Crossref]

K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
[Crossref]

K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,” Phys. Rev. Lett. 83, 967 (1999).
[Crossref]

Caglayan, H.

I. Bulu, H. Caglayan, and E. Ozbay, “Radiation properties of sources inside photonic crystals,” Phys. Rev. B 67, 205103 (2003).
[Crossref]

I. Bulu, H. Caglayan, and E. Ozbay, “Highly directive radiation from sources embedded inside photonic crystals,” Appl. Phys. Lett. 83, 3263 (2003).
[Crossref]

Chan, C. T.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945 (1994).
[Crossref]

Chigrin, D. N.

D. N. Chigrin, “Radiation pattern of a classical dipole in a photonic crystal: Photon focusing,” Phys. Rev. E 70, 056611 (2004).
[Crossref]

Chutinan, A.

M. Okano, A. Chutinan, and S. Noda, “Analysis and design of single-defect cavities in a three-dimensional photonic crystal,” Phys. Rev. B 66, 165211 (2002).
[Crossref]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J.Quantum Electron. 38(7), 726 (2002).
[Crossref]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science,  289, 604 (2000).
[Crossref] [PubMed]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Optical Properties of an Ionic-Type Phononic Crystal,” Science 284, 1819 (1999).
[Crossref] [PubMed]

de Maagt, P.

R. Gonzalo, P. de Maagt, and M. Sorolla, “Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates,” IEEE Trans. Microwave Theory Tech. 47 (11), 2131 (1999).
[Crossref]

De Martini, F.

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
[Crossref]

Elbaum, C.

B. Taylor, H. J. Maris, and C. Elbaum, “Phonon Focusing in Solids,” Phys. Rev. Lett. 23, 416 (1969).
[Crossref]

Enoch, S.

S. Enoch, B. Gralak, and G. Tayeb, “Enhanced emission with angular confinement from photonic crystals,” App. Phys. Lett. 81 (9), 1588 (2002).
[Crossref]

Fan, S.

P. R. Villenevue, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodjeski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).
[Crossref]

Gonzalo, R.

R. Gonzalo, P. de Maagt, and M. Sorolla, “Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates,” IEEE Trans. Microwave Theory Tech. 47 (11), 2131 (1999).
[Crossref]

Gourley, P. L.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687 (1994).
[Crossref]

Gralak, B.

S. Enoch, B. Gralak, and G. Tayeb, “Enhanced emission with angular confinement from photonic crystals,” App. Phys. Lett. 81 (9), 1588 (2002).
[Crossref]

Hammons, B. E.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687 (1994).
[Crossref]

Hangyo, M.

T. Kondo, M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, “Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy,” Phys. Rev. B 66, 033111 (2002).
[Crossref]

Ho, K. M.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Micro. Opt. Tech. Lett.,  23, 56 (1999).
[Crossref]

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376 (1998).
[Crossref]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band-gap crystal,” Phys. Rev. B 51, 13961 (1995).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945 (1994).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).
[Crossref]

Huh, J.

H. Park, J. Hwang, J. Huh, H. Ryu, S. Kim, J. Kim, and Y. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J.Quantum Electron. 38 (10), 1353 (2002).
[Crossref]

Hwang, J.

H. Park, J. Hwang, J. Huh, H. Ryu, S. Kim, J. Kim, and Y. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J.Quantum Electron. 38 (10), 1353 (2002).
[Crossref]

Imada, A.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
[Crossref]

Imada, M.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Control of Light Emission by 3D Photonic Crystals,” Science 305, 227 (2004).
[Crossref] [PubMed]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J.Quantum Electron. 38(7), 726 (2002).
[Crossref]

Inoue, J.

K. Ohtaka, J. Inoue, and S. Yamaguti, “Derivation of the density of states of leaky photonic bands,” Phys. Rev. B 70, 035109 (2004).
[Crossref]

Joannopoulos, J. D.

P. R. Villenevue, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodjeski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995.).

John, S.

K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
[Crossref]

K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,” Phys. Rev. Lett. 83, 967 (1999).
[Crossref]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

Kavanaugh, J. P.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376 (1998).
[Crossref]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Optical Properties of an Ionic-Type Phononic Crystal,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Kim, J.

H. Park, J. Hwang, J. Huh, H. Ryu, S. Kim, J. Kim, and Y. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J.Quantum Electron. 38 (10), 1353 (2002).
[Crossref]

Kim, S.

H. Park, J. Hwang, J. Huh, H. Ryu, S. Kim, J. Kim, and Y. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J.Quantum Electron. 38 (10), 1353 (2002).
[Crossref]

Koda, T.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
[Crossref]

Kolodjeski, L. A.

P. R. Villenevue, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodjeski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).
[Crossref]

Kondo, T.

T. Kondo, M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, “Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy,” Phys. Rev. B 66, 033111 (2002).
[Crossref]

Kothari, S. C.

M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Micro. Opt. Tech. Lett.,  23, 56 (1999).
[Crossref]

Lagendijk, A.

M. Wubs and A. Lagendijk, “Local optical density of states in finite crystals of plane scatterers,” Phys. Rev. E 65, 046612 (2002).
[Crossref]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Optical Properties of an Ionic-Type Phononic Crystal,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Lee, Y.

H. Park, J. Hwang, J. Huh, H. Ryu, S. Kim, J. Kim, and Y. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J.Quantum Electron. 38 (10), 1353 (2002).
[Crossref]

Lidorikis, E.

Lim, K. Y.

P. R. Villenevue, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodjeski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).
[Crossref]

Lin, S.

M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Micro. Opt. Tech. Lett.,  23, 56 (1999).
[Crossref]

Lousse, V.

V. Lousse, J. Vigneron, X. Bouju, and J. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104 (2001).
[Crossref]

Maris, H. J.

B. Taylor, H. J. Maris, and C. Elbaum, “Phonon Focusing in Solids,” Phys. Rev. Lett. 23, 416 (1969).
[Crossref]

Marrocco, M.

Martijn de Sterke, C.

A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E 63, 046612 (2001).
[Crossref]

Mataloni, P.

McMahon, O. B.

E. R. Brown and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300 (1996).
[Crossref]

McPhedran, R. C.

A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E 63, 046612 (2001).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995.).

Mizuno, K.

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
[Crossref]

Mochizuki, M.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J.Quantum Electron. 38(7), 726 (2002).
[Crossref]

Murra, D.

Nagano, S.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
[Crossref]

Nicorovici, N. A.

A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E 63, 046612 (2001).
[Crossref]

Noda, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Control of Light Emission by 3D Photonic Crystals,” Science 305, 227 (2004).
[Crossref] [PubMed]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J.Quantum Electron. 38(7), 726 (2002).
[Crossref]

M. Okano, A. Chutinan, and S. Noda, “Analysis and design of single-defect cavities in a three-dimensional photonic crystal,” Phys. Rev. B 66, 165211 (2002).
[Crossref]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science,  289, 604 (2000).
[Crossref] [PubMed]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Optical Properties of an Ionic-Type Phononic Crystal,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Ogawa, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Control of Light Emission by 3D Photonic Crystals,” Science 305, 227 (2004).
[Crossref] [PubMed]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J.Quantum Electron. 38(7), 726 (2002).
[Crossref]

Ohtaka, K.

K. Ohtaka, J. Inoue, and S. Yamaguti, “Derivation of the density of states of leaky photonic bands,” Phys. Rev. B 70, 035109 (2004).
[Crossref]

T. Kondo, M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, “Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy,” Phys. Rev. B 66, 033111 (2002).
[Crossref]

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
[Crossref]

K. Sakoda and K. Ohtaka, “Optical response of three-dimensional photonic lattices: Solutions of inhomogeneous Maxwell’s equations and their applications,” Phys. Rev. B 54, 5732 (1996).
[Crossref]

Okano, M.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Control of Light Emission by 3D Photonic Crystals,” Science 305, 227 (2004).
[Crossref] [PubMed]

M. Okano, A. Chutinan, and S. Noda, “Analysis and design of single-defect cavities in a three-dimensional photonic crystal,” Phys. Rev. B 66, 165211 (2002).
[Crossref]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J.Quantum Electron. 38(7), 726 (2002).
[Crossref]

Ozbay, E.

I. Bulu, H. Caglayan, and E. Ozbay, “Radiation properties of sources inside photonic crystals,” Phys. Rev. B 67, 205103 (2003).
[Crossref]

I. Bulu, H. Caglayan, and E. Ozbay, “Highly directive radiation from sources embedded inside photonic crystals,” Appl. Phys. Lett. 83, 3263 (2003).
[Crossref]

M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, R2247–R2250 (2000).
[Crossref]

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376 (1998).
[Crossref]

E. Ozbay, “Layer-by-layer photonic crystals from microwave to far-infrared frequencies,” J. Opt. Soc. Am. B 13, 1945 (1996).
[Crossref]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band-gap crystal,” Phys. Rev. B 51, 13961 (1995).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945 (1994).
[Crossref]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Optical Properties of an Ionic-Type Phononic Crystal,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Park, H.

H. Park, J. Hwang, J. Huh, H. Ryu, S. Kim, J. Kim, and Y. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J.Quantum Electron. 38 (10), 1353 (2002).
[Crossref]

Parker, C. D.

Petrich, G. S.

P. R. Villenevue, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodjeski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).
[Crossref]

Quang, T.

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[Crossref] [PubMed]

Reif, R.

P. R. Villenevue, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodjeski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).
[Crossref]

Ryu, H.

H. Park, J. Hwang, J. Huh, H. Ryu, S. Kim, J. Kim, and Y. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J.Quantum Electron. 38 (10), 1353 (2002).
[Crossref]

Sakoda, K.

K. Sakoda and K. Ohtaka, “Optical response of three-dimensional photonic lattices: Solutions of inhomogeneous Maxwell’s equations and their applications,” Phys. Rev. B 54, 5732 (1996).
[Crossref]

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Germany, 2001).

Sanders, B. C.

K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
[Crossref]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
[Crossref]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Optical Properties of an Ionic-Type Phononic Crystal,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Segawa, Y.

T. Kondo, M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, “Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy,” Phys. Rev. B 66, 033111 (2002).
[Crossref]

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
[Crossref]

Sigalas, M.

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band-gap crystal,” Phys. Rev. B 51, 13961 (1995).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).
[Crossref]

Sigalas, M. M.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Micro. Opt. Tech. Lett.,  23, 56 (1999).
[Crossref]

Sorolla, M.

R. Gonzalo, P. de Maagt, and M. Sorolla, “Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates,” IEEE Trans. Microwave Theory Tech. 47 (11), 2131 (1999).
[Crossref]

Soukoulis, C. M.

M. Agio, E. Lidorikis, and C. M. Soukoulis, “Impurity modes in a two-dimensional photonic crystal: coupling efficiency and Q factor,” J. Opt. Soc. Am. B 17 (12), 2037 (2000).
[Crossref]

M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Micro. Opt. Tech. Lett.,  23, 56 (1999).
[Crossref]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band-gap crystal,” Phys. Rev. B 51, 13961 (1995).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945 (1994).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).
[Crossref]

Suda, Y.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
[Crossref]

Tayeb, G.

S. Enoch, B. Gralak, and G. Tayeb, “Enhanced emission with angular confinement from photonic crystals,” App. Phys. Lett. 81 (9), 1588 (2002).
[Crossref]

Taylor, B.

B. Taylor, H. J. Maris, and C. Elbaum, “Phonon Focusing in Solids,” Phys. Rev. Lett. 23, 416 (1969).
[Crossref]

Temelkuran, B.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376 (1998).
[Crossref]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science,  289, 604 (2000).
[Crossref] [PubMed]

Tringides, M.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945 (1994).
[Crossref]

Turner, D.

M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Micro. Opt. Tech. Lett.,  23, 56 (1999).
[Crossref]

Tuttle, G.

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376 (1998).
[Crossref]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band-gap crystal,” Phys. Rev. B 51, 13961 (1995).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945 (1994).
[Crossref]

Ueta, T.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
[Crossref]

Vasiliu, B.

M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Micro. Opt. Tech. Lett.,  23, 56 (1999).
[Crossref]

Vats, N.

K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
[Crossref]

Vawter, G. A.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687 (1994).
[Crossref]

Vigneron, J.

V. Lousse, J. Vigneron, X. Bouju, and J. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104 (2001).
[Crossref]

Vigoureux, J.

V. Lousse, J. Vigneron, X. Bouju, and J. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104 (2001).
[Crossref]

Villenevue, P. R.

P. R. Villenevue, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodjeski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).
[Crossref]

Wendt, J. R.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687 (1994).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995.).

Wubs, M.

M. Wubs and A. Lagendijk, “Local optical density of states in finite crystals of plane scatterers,” Phys. Rev. E 65, 046612 (2002).
[Crossref]

Yablonovitch, E.

E. R. Brown, C. D. Parker, and E. Yablonovitch, “Radiation properties of a planar antenna on a photonic-crystal substrate,” J. Opt. Soc. Am. B 10, 404 (1993).
[Crossref]

E. Yablonovitch,“Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

Yamaguchi, S.

T. Kondo, M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, “Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy,” Phys. Rev. B 66, 033111 (2002).
[Crossref]

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

Yamaguti, S.

K. Ohtaka, J. Inoue, and S. Yamaguti, “Derivation of the density of states of leaky photonic bands,” Phys. Rev. B 70, 035109 (2004).
[Crossref]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science,  289, 604 (2000).
[Crossref] [PubMed]

Yano, S.

T. Kondo, M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, “Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy,” Phys. Rev. B 66, 033111 (2002).
[Crossref]

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
[Crossref]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Optical Properties of an Ionic-Type Phononic Crystal,” Science 284, 1819 (1999).
[Crossref] [PubMed]

Yoshimoto, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Control of Light Emission by 3D Photonic Crystals,” Science 305, 227 (2004).
[Crossref] [PubMed]

App. Phys. Lett. (1)

S. Enoch, B. Gralak, and G. Tayeb, “Enhanced emission with angular confinement from photonic crystals,” App. Phys. Lett. 81 (9), 1588 (2002).
[Crossref]

Appl. Phys. Lett. (5)

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, “Resonant cavity enhanced detectors embedded in photonic crystals,” Appl. Phys. Lett. 72, 2376 (1998).
[Crossref]

P. R. Villenevue, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodjeski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).
[Crossref]

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687 (1994).
[Crossref]

E. R. Brown and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300 (1996).
[Crossref]

I. Bulu, H. Caglayan, and E. Ozbay, “Highly directive radiation from sources embedded inside photonic crystals,” Appl. Phys. Lett. 83, 3263 (2003).
[Crossref]

IEEE J.Quantum Electron. (2)

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J.Quantum Electron. 38(7), 726 (2002).
[Crossref]

H. Park, J. Hwang, J. Huh, H. Ryu, S. Kim, J. Kim, and Y. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J.Quantum Electron. 38 (10), 1353 (2002).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

R. Gonzalo, P. de Maagt, and M. Sorolla, “Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates,” IEEE Trans. Microwave Theory Tech. 47 (11), 2131 (1999).
[Crossref]

J. Appl. Phys. (2)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
[Crossref]

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000).
[Crossref]

J. Opt. Soc. Am. B (4)

Micro. Opt. Tech. Lett. (1)

M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Micro. Opt. Tech. Lett.,  23, 56 (1999).
[Crossref]

Phys. Rev. A (1)

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[Crossref] [PubMed]

Phys. Rev. B (11)

V. Lousse, J. Vigneron, X. Bouju, and J. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104 (2001).
[Crossref]

K. Sakoda and K. Ohtaka, “Optical response of three-dimensional photonic lattices: Solutions of inhomogeneous Maxwell’s equations and their applications,” Phys. Rev. B 54, 5732 (1996).
[Crossref]

M. Okano, A. Chutinan, and S. Noda, “Analysis and design of single-defect cavities in a three-dimensional photonic crystal,” Phys. Rev. B 66, 165211 (2002).
[Crossref]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band-gap crystal,” Phys. Rev. B 51, 13961 (1995).
[Crossref]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945 (1994).
[Crossref]

I. Bulu, H. Caglayan, and E. Ozbay, “Radiation properties of sources inside photonic crystals,” Phys. Rev. B 67, 205103 (2003).
[Crossref]

M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B 62, R2247–R2250 (2000).
[Crossref]

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, “Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres,” Phys. Rev. B 66, 075119 (2002).
[Crossref]

T. Kondo, M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, “Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy,” Phys. Rev. B 66, 033111 (2002).
[Crossref]

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, “Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,” Phys. Rev. B 61, 5267 (2000).
[Crossref]

K. Ohtaka, J. Inoue, and S. Yamaguti, “Derivation of the density of states of leaky photonic bands,” Phys. Rev. B 70, 035109 (2004).
[Crossref]

Phys. Rev. E (4)

M. Wubs and A. Lagendijk, “Local optical density of states in finite crystals of plane scatterers,” Phys. Rev. E 65, 046612 (2002).
[Crossref]

A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E 63, 046612 (2001).
[Crossref]

D. N. Chigrin, “Radiation pattern of a classical dipole in a photonic crystal: Photon focusing,” Phys. Rev. E 70, 056611 (2004).
[Crossref]

K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
[Crossref]

Phys. Rev. Lett. (4)

K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,” Phys. Rev. Lett. 83, 967 (1999).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[Crossref] [PubMed]

E. Yablonovitch,“Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[Crossref] [PubMed]

B. Taylor, H. J. Maris, and C. Elbaum, “Phonon Focusing in Solids,” Phys. Rev. Lett. 23, 416 (1969).
[Crossref]

Science (3)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Optical Properties of an Ionic-Type Phononic Crystal,” Science 284, 1819 (1999).
[Crossref] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science,  289, 604 (2000).
[Crossref] [PubMed]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Control of Light Emission by 3D Photonic Crystals,” Science 305, 227 (2004).
[Crossref] [PubMed]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).
[Crossref]

Other (3)

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Germany, 2001).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995.).

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Band diagram for the 3D layer-by-layer dielectric photonic crystal.

Fig. 2.
Fig. 2.

Schematics of 3D layer-by-layer photonic crystal.

Fig. 3.
Fig. 3.

a) Transmission along the stacking direction between 10 GHz and 17 GHz b) Solid curve represents transmission and dashed curve represents delay time for the lower band-gap edge along the stacking direction.

Fig. 4.
Fig. 4.

Enhancement factor around the lower band-gap edge along the stacking direction.

Fig. 5.
Fig. 5.

a) Calculated and measured transmission of the cavity mode along the stacking direction. b) Solid curve represents transmission and dashed curve represents delay time for the cavity mode.

Fig. 6.
Fig. 6.

FDTD calculation of electric-field intensity for the cavity mode. The missing rod is at the center of the structure.

Fig. 7.
Fig. 7.

Enhancement factor for a monopole source located inside a cavity.

Fig. 8.
Fig. 8.

The measured and calculated radiation patterns of the monopole antenna inside the 3D photonic crystal for a)E and b)H planes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D 0 4 π Θ 1 Θ 2

Metrics