Abstract

We have experimentally studied emission of microwave radiation from a monopole source embedded in a three-dimensional photonic crystal. We have demonstrated enhancement of microwave radiation at the band edge and cavity mode frequencies. Furthermore, we have shown that it is possible to obtain highly directive microwave radiation sources operating at the band edge of the three-dimensional photonic crystal. We have measured half power beam widths of 13° for both E and H planes, corresponding to a maximum directivity of 245.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, �??Inhibited Spontaneous Emission in Solid-State Physics and Electronics,�?? Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995.).
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim, �??Optical Properties of an Ionic-Type Phononic Crystal,�?? Science 284, 1819 (1999).
    [CrossRef] [PubMed]
  5. B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, �??Photonic crystal-based resonant antenna with a very high directivity,�?? J. Appl. Phys. 87, 603 (2000).
    [CrossRef]
  6. K. Busch and S. John, �??Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,�?? Phys. Rev. Lett. 83, 967 (1999).
    [CrossRef]
  7. F. De Martini, M. Marrocco, P. Mataloni, and D. Murra, �??Spontaneous and stimulated emission in the thresholdless microlaser,�?? J. Opt. Soc. Am. B 10, 360 (1993).
    [CrossRef]
  8. P. R. Villenevue, S. Fan, J. D.Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodjeski, and R. Reif, �??Air-bridge microcavities,�?? Appl. Phys. Lett. 67, 167 (1995).
    [CrossRef]
  9. P. L. Gourley, J. R.Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, �??Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,�?? Appl. Phys. Lett. 64, 687 (1994).
    [CrossRef]
  10. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, �??The photonic band edge laser: A new approach to gain enhancement,�?? J. Appl. Phys. 75, 1896 (1994).
    [CrossRef]
  11. E. R. Brown, C. D. Parker, and E. Yablonovitch, �??Radiation properties of a planar antenna on a photonic-crystal substrate,�?? J. Opt. Soc. Am. B 10, 404 (1993).
    [CrossRef]
  12. K. Busch, N. Vats, S. John, and B. C. Sanders, �??Radiating dipoles in photonic crystals,�?? Phys. Rev. E 62, 4251-4260 (2000).
    [CrossRef]
  13. V. Lousse, J. Vigneron, X. Bouju, and J. Vigoureux, �??Atomic radiation rates in photonic crystals,�?? Phys. Rev. B 64, 201104 (2001).
    [CrossRef]
  14. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, �??Two-dimensional Green�??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,�?? Phys. Rev. E 63, 046612 (2001).
    [CrossRef]
  15. S. John and T. Quang, �??Spontaneous emission near the edge of a photonic band gap,�?? Phys. Rev. A 50, 1764-1769 (1994).
    [CrossRef] [PubMed]
  16. D. N. Chigrin, �??Radiation pattern of a classical dipole in a photonic crystal: Photon focusing,�?? Phys. Rev. E 70, 056611 (2004).
    [CrossRef]
  17. B. Taylor, H. J. Maris, and C. Elbaum, �??Phonon Focusing in Solids ,�?? Phys. Rev. Lett. 23, 416 (1969).
    [CrossRef]
  18. E. R. Brown and O. B. McMahon, �??High zenithal directivity from a dipole antenna on a photonic crystal ,�?? Appl. Phys. Lett. 68, 1300 (1996).
    [CrossRef]
  19. R. Gonzalo, P. de Maagt, and M. Sorolla, �??Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates,�?? IEEE Trans. Microwave Theory Tech. 47 (11), 2131 (1999).
    [CrossRef]
  20. I. Bulu, H. Caglayan, and E. Ozbay, �??Highly directive radiation from sources embedded inside photonic crystals,�?? Appl. Phys. Lett. 83, 3263 (2003).
    [CrossRef]
  21. I. Bulu, H. Caglayan, and E. Ozbay, �??Radiation properties of sources inside photonic crystals,�?? Phys. Rev. B 67, 205103 (2003).
    [CrossRef]
  22. M. Bayindir and E. Ozbay, �??Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal ,�?? Phys. Rev. B 62, R2247-R2250 (2000).
    [CrossRef]
  23. S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, �??Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres,�?? Phys. Rev. B 66, 075119 (2002).
    [CrossRef]
  24. T. Kondo, M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, �??Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy,�?? Phys. Rev. B 66, 033111 (2002).
    [CrossRef]
  25. K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, �??Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,�?? Phys.Rev. B 61, 5267 (2000).
    [CrossRef]
  26. K. Ohtaka, J. Inoue, and S. Yamaguti, �?? Derivation of the density of states of leaky photonic bands,�?? Phys. Rev. B 70, 035109 (2004).
    [CrossRef]
  27. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Germany, 2001).
  28. K. Sakoda and K. Ohtaka, �??Optical response of three-dimensional photonic lattices: Solutions of inhomogeneous Maxwell�??s equations and their applications,�?? Phys. Rev. B 54, 5732 (1996).
    [CrossRef]
  29. M. Wubs and A. Lagendijk, �??Local optical density of states in finite crystals of plane scatterers ,�?? Phys. Rev. E 65, 046612 (2002).
    [CrossRef]
  30. E. Ozbay, �??Layer-by-layer photonic crystals from microwave to far-infrared frequencies,�?? J. Opt. Soc. Am. B 13, 1945 (1996).
    [CrossRef]
  31. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, �??Photonic band gaps in three dimensions:New layer-by-layer periodic structures,�?? Solid State Commun. 89, 413 (1994).
    [CrossRef]
  32. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas,C. T. Chan, C. M. Soukoulis, and K. M. Ho, �??Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods ,�?? Phys. Rev. B 50, 1945 (1994).
    [CrossRef]
  33. S.Noda, K.Tomoda, N.Yamamoto, and A. Chutinan, �??Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,�?? Science 289, 604 (2000).
    [CrossRef] [PubMed]
  34. S. Ogawa,M. Imada, S. Yoshimoto, M. Okano, and S. Noda, "Control of Light Emission by 3D Photonic Crystals,�?? Science 305, 227 (2004).
    [CrossRef] [PubMed]
  35. S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, �??Semiconductor three-dimensional and two-dimensional photonic crystals and devices,�?? IEEE J.Quantum Electron. 38 (7), 726 (2002).
    [CrossRef]
  36. M. Okano, A. Chutinan, and S. Noda, �??Analysis and design of single-defect cavities in a three-dimensional photonic crystal,�?? Phys. Rev. B 66, 165211 (2002).
    [CrossRef]
  37. E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis and K. M. Ho, �??Defect structures in a layer-by-layer photonic band-gap crystal,�?? Phys. Rev. B 51, 13961 (1995).
    [CrossRef]
  38. B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, �??Resonant cavity enhanced detectors embedded in photonic crystals,�?? Appl. Phys. Lett. 72, 2376 (1998).
    [CrossRef]
  39. M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, �??Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,�?? Micro. Opt. Tech. Lett. 23, 56 (1999).
    [CrossRef]
  40. H. Park, J.Hwang, J. Huh, H. Ryu, S. Kim, J. Kim, and Y.Lee, �??Characteristics of modified single-defect two-dimensional photonic crystal lasers,�?? IEEE J.Quantum Electron. 38 (10), 1353 (2002).
    [CrossRef]
  41. M. Agio, E. Lidorikis, and C. M. Soukoulis, �??Impurity modes in a two-dimensional photonic crystal: coupling efficiency and Q factor ,�?? J. Opt. Soc. Am. B 17 (12), 2037 (2000).
    [CrossRef]
  42. S. Enoch, B. Gralak, and G. Tayeb, �??Enhanced emission with angular confinement from photonic crystals,�?? App. Phys. Lett. 81 (9), 1588 (2002).
    [CrossRef]
  43. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).

App. Phys. Lett. (1)

S. Enoch, B. Gralak, and G. Tayeb, �??Enhanced emission with angular confinement from photonic crystals,�?? App. Phys. Lett. 81 (9), 1588 (2002).
[CrossRef]

Appl. Phys. Lett. (5)

P. R. Villenevue, S. Fan, J. D.Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodjeski, and R. Reif, �??Air-bridge microcavities,�?? Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

P. L. Gourley, J. R.Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, �??Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,�?? Appl. Phys. Lett. 64, 687 (1994).
[CrossRef]

E. R. Brown and O. B. McMahon, �??High zenithal directivity from a dipole antenna on a photonic crystal ,�?? Appl. Phys. Lett. 68, 1300 (1996).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, �??Highly directive radiation from sources embedded inside photonic crystals,�?? Appl. Phys. Lett. 83, 3263 (2003).
[CrossRef]

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, �??Resonant cavity enhanced detectors embedded in photonic crystals,�?? Appl. Phys. Lett. 72, 2376 (1998).
[CrossRef]

IEEE J.Quantum Electron. (2)

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, �??Semiconductor three-dimensional and two-dimensional photonic crystals and devices,�?? IEEE J.Quantum Electron. 38 (7), 726 (2002).
[CrossRef]

H. Park, J.Hwang, J. Huh, H. Ryu, S. Kim, J. Kim, and Y.Lee, �??Characteristics of modified single-defect two-dimensional photonic crystal lasers,�?? IEEE J.Quantum Electron. 38 (10), 1353 (2002).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. Gonzalo, P. de Maagt, and M. Sorolla, �??Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates,�?? IEEE Trans. Microwave Theory Tech. 47 (11), 2131 (1999).
[CrossRef]

J. Appl. Phys. (2)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, �??The photonic band edge laser: A new approach to gain enhancement,�?? J. Appl. Phys. 75, 1896 (1994).
[CrossRef]

B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, �??Photonic crystal-based resonant antenna with a very high directivity,�?? J. Appl. Phys. 87, 603 (2000).
[CrossRef]

J. Opt. Soc. Am. B (4)

Micro. Opt. Tech. Lett. (1)

M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, �??Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,�?? Micro. Opt. Tech. Lett. 23, 56 (1999).
[CrossRef]

Phys. Rev. A (1)

S. John and T. Quang, �??Spontaneous emission near the edge of a photonic band gap,�?? Phys. Rev. A 50, 1764-1769 (1994).
[CrossRef] [PubMed]

Phys. Rev. B (10)

V. Lousse, J. Vigneron, X. Bouju, and J. Vigoureux, �??Atomic radiation rates in photonic crystals,�?? Phys. Rev. B 64, 201104 (2001).
[CrossRef]

M. Okano, A. Chutinan, and S. Noda, �??Analysis and design of single-defect cavities in a three-dimensional photonic crystal,�?? Phys. Rev. B 66, 165211 (2002).
[CrossRef]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis and K. M. Ho, �??Defect structures in a layer-by-layer photonic band-gap crystal,�?? Phys. Rev. B 51, 13961 (1995).
[CrossRef]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas,C. T. Chan, C. M. Soukoulis, and K. M. Ho, �??Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods ,�?? Phys. Rev. B 50, 1945 (1994).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, �??Radiation properties of sources inside photonic crystals,�?? Phys. Rev. B 67, 205103 (2003).
[CrossRef]

M. Bayindir and E. Ozbay, �??Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal ,�?? Phys. Rev. B 62, R2247-R2250 (2000).
[CrossRef]

S. Yano, Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, �??Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres,�?? Phys. Rev. B 66, 075119 (2002).
[CrossRef]

T. Kondo, M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, �??Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy,�?? Phys. Rev. B 66, 033111 (2002).
[CrossRef]

K. Ohtaka, J. Inoue, and S. Yamaguti, �?? Derivation of the density of states of leaky photonic bands,�?? Phys. Rev. B 70, 035109 (2004).
[CrossRef]

K. Sakoda and K. Ohtaka, �??Optical response of three-dimensional photonic lattices: Solutions of inhomogeneous Maxwell�??s equations and their applications,�?? Phys. Rev. B 54, 5732 (1996).
[CrossRef]

Phys. Rev. E (4)

M. Wubs and A. Lagendijk, �??Local optical density of states in finite crystals of plane scatterers ,�?? Phys. Rev. E 65, 046612 (2002).
[CrossRef]

A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, �??Two-dimensional Green�??s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,�?? Phys. Rev. E 63, 046612 (2001).
[CrossRef]

D. N. Chigrin, �??Radiation pattern of a classical dipole in a photonic crystal: Photon focusing,�?? Phys. Rev. E 70, 056611 (2004).
[CrossRef]

K. Busch, N. Vats, S. John, and B. C. Sanders, �??Radiating dipoles in photonic crystals,�?? Phys. Rev. E 62, 4251-4260 (2000).
[CrossRef]

Phys. Rev. Lett. (4)

K. Busch and S. John, �??Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum,�?? Phys. Rev. Lett. 83, 967 (1999).
[CrossRef]

S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, �??Inhibited Spontaneous Emission in Solid-State Physics and Electronics,�?? Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

B. Taylor, H. J. Maris, and C. Elbaum, �??Phonon Focusing in Solids ,�?? Phys. Rev. Lett. 23, 416 (1969).
[CrossRef]

Phys.Rev. B (1)

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, �??Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region,�?? Phys.Rev. B 61, 5267 (2000).
[CrossRef]

Science (3)

S.Noda, K.Tomoda, N.Yamamoto, and A. Chutinan, �??Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,�?? Science 289, 604 (2000).
[CrossRef] [PubMed]

S. Ogawa,M. Imada, S. Yoshimoto, M. Okano, and S. Noda, "Control of Light Emission by 3D Photonic Crystals,�?? Science 305, 227 (2004).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim, �??Optical Properties of an Ionic-Type Phononic Crystal,�?? Science 284, 1819 (1999).
[CrossRef] [PubMed]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, �??Photonic band gaps in three dimensions:New layer-by-layer periodic structures,�?? Solid State Commun. 89, 413 (1994).
[CrossRef]

Other (3)

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Germany, 2001).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995.).

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Band diagram for the 3D layer-by-layer dielectric photonic crystal.

Fig. 2.
Fig. 2.

Schematics of 3D layer-by-layer photonic crystal.

Fig. 3.
Fig. 3.

a) Transmission along the stacking direction between 10 GHz and 17 GHz b) Solid curve represents transmission and dashed curve represents delay time for the lower band-gap edge along the stacking direction.

Fig. 4.
Fig. 4.

Enhancement factor around the lower band-gap edge along the stacking direction.

Fig. 5.
Fig. 5.

a) Calculated and measured transmission of the cavity mode along the stacking direction. b) Solid curve represents transmission and dashed curve represents delay time for the cavity mode.

Fig. 6.
Fig. 6.

FDTD calculation of electric-field intensity for the cavity mode. The missing rod is at the center of the structure.

Fig. 7.
Fig. 7.

Enhancement factor for a monopole source located inside a cavity.

Fig. 8.
Fig. 8.

The measured and calculated radiation patterns of the monopole antenna inside the 3D photonic crystal for a)E and b)H planes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D 0 4 π Θ 1 Θ 2

Metrics