Abstract

We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers <10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain and F. Seguineau, �??Optical regeneration at 40 Gb/s and beyond,�?? J. Lightwave Technol. 21, 2779 (2003).
    [CrossRef]
  2. Z. Huang, A. Gray, I. Khrushchev and I. Bennion, �??10-Gb/s transmission over 100 Mm of standard fiber using 2R regeneration in an optical loop mirror,�?? Photon. Technol. Lett. 16, 2526 (2004).
    [CrossRef]
  3. P. Brindel, O. Leclerc, D. Rouvillain, B. Dany and E. Desurvire, �??Experimental validation of new regeneration scheme for 40Gbit/s dispersion-managed long-haul transmission,�?? in Proc. Optical Fiber Communication (OFC�??00), Anaheim CA, p42, 2000.
  4. P. V. Mamyshev, �??All-optical data regeneration based on self-phase modulation effect�??, in Proc. European Conference on Optical Communications (ECOC�??98), p 475, 1998.
  5. M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok and B. J. Eggleton, �??Bit-error-ratio improvement with 2R optical regenerators,�?? Photon. Technol. Lett. 17, 908 (2005).
    [CrossRef]
  6. M. Rochette, J. L. Blows, and B. J. Eggleton, �??An all-optical regenerator that discriminates noise from signal,�?? in Proc. European Conference on Optical Communications (ECOC�??2005) We2.4.1, 2005.
  7. T. Her, G. Raybon and C. Headley, �??Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,�?? Photon. Technol. Lett. 16, 200 (2004).
    [CrossRef]
  8. G. Raybon, Y. Su, J. Leuthtold, R-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, K. Dreyer and K. Feder, �??40Gb/s Psuedo-linear transmission over one million kilometers,�?? in Proc. Optical Fiber Communications (OFC�??02), Anaheim CA, postdeadline paper FD10, 2002.
  9. J. Mork, F. Ohman, and S. Bischoff, �??Analytical expression for the bit error rate of cascaded all-optical regenerators,�?? Photon. Technol. Lett. 15, pp. 1479-1481 (2003).
    [CrossRef]
  10. R.E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw and I. D. Aggarwal, �??Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,�?? J. Opt. Soc. Am. B 21, 1146 (2004).
    [CrossRef]
  11. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-256 (2000).
    [CrossRef]
  12. M. Asobe, �??Nonlinear optical properties of chalcogenide fiber and their application to all-optical switching,�?? Opt. Fiber Technol. 3, 142 (1997).
    [CrossRef]
  13. M. Asobe, T. Ohara, I. Yokohama, T. Kaino, �??Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fiber,�?? Electron. Lett. 32, 1396 (1996).
    [CrossRef]
  14. D. -P. Wei, T. V. Galstian, I. V. Smolnikov V. G. Plotnichenko and A. Zohrabyan, �??Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber,�?? Opt. Express 13, 2439 (2005). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2439"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2439</a>
    [CrossRef] [PubMed]
  15. G. P. Agrawal, Nonlinear fiber optics (Academic, San Diego, 1989).
  16. J. H. Lee, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara and N. Sugimoto, �??All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber,�?? Opt. Express, 13, 6864 (2005). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-6864"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-6864</a>
    [CrossRef] [PubMed]

ECOC 1998

P. V. Mamyshev, �??All-optical data regeneration based on self-phase modulation effect�??, in Proc. European Conference on Optical Communications (ECOC�??98), p 475, 1998.

ECOC 2005

M. Rochette, J. L. Blows, and B. J. Eggleton, �??An all-optical regenerator that discriminates noise from signal,�?? in Proc. European Conference on Optical Communications (ECOC�??2005) We2.4.1, 2005.

Electron. Lett.

M. Asobe, T. Ohara, I. Yokohama, T. Kaino, �??Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fiber,�?? Electron. Lett. 32, 1396 (1996).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

OFC 2000

P. Brindel, O. Leclerc, D. Rouvillain, B. Dany and E. Desurvire, �??Experimental validation of new regeneration scheme for 40Gbit/s dispersion-managed long-haul transmission,�?? in Proc. Optical Fiber Communication (OFC�??00), Anaheim CA, p42, 2000.

OFC 2002

G. Raybon, Y. Su, J. Leuthtold, R-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, K. Dreyer and K. Feder, �??40Gb/s Psuedo-linear transmission over one million kilometers,�?? in Proc. Optical Fiber Communications (OFC�??02), Anaheim CA, postdeadline paper FD10, 2002.

Opt. Express

Opt. Fiber Technol.

M. Asobe, �??Nonlinear optical properties of chalcogenide fiber and their application to all-optical switching,�?? Opt. Fiber Technol. 3, 142 (1997).
[CrossRef]

Opt. Lett.

Photon. Technol. Lett.

J. Mork, F. Ohman, and S. Bischoff, �??Analytical expression for the bit error rate of cascaded all-optical regenerators,�?? Photon. Technol. Lett. 15, pp. 1479-1481 (2003).
[CrossRef]

T. Her, G. Raybon and C. Headley, �??Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,�?? Photon. Technol. Lett. 16, 200 (2004).
[CrossRef]

Z. Huang, A. Gray, I. Khrushchev and I. Bennion, �??10-Gb/s transmission over 100 Mm of standard fiber using 2R regeneration in an optical loop mirror,�?? Photon. Technol. Lett. 16, 2526 (2004).
[CrossRef]

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok and B. J. Eggleton, �??Bit-error-ratio improvement with 2R optical regenerators,�?? Photon. Technol. Lett. 17, 908 (2005).
[CrossRef]

Other

G. P. Agrawal, Nonlinear fiber optics (Academic, San Diego, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Principle of device operation. At low intensities, pulses experience little SPM induced spectral broadening and so are removed by the offset bandpass filter. At high intensities, input signal pulses experience large SPM induced spectral broadening and are transmitted through the (offset) bandpass filter. The resulting nonlinear transfer function can be used to regenerate the pulses. The large n 2 in chalcogenide fiber enables operation with less than 3 m of nonlinear fiber.

Fig. 2.
Fig. 2.

Experimental configuration for demonstrating optical regeneration. PC - polarization controller, EDFA - erbium doped fiber amplifier, VOA - variable optical attenuator, BPF -bandpass filter, OSA - optical spectrum analyzer and AC - pulse autocorrelator.

Fig. 3.
Fig. 3.

Regenerator spectra. (a–f) Measured and theoretical SPM broadened pulse spectra with increasing coupled peak power. (g) The bandpass filter transmission spectrum, offset by 1.3nm from the input centre wavelength, and with a 3 dB bandwidth of 70 GHz. (h) Output pulse spectrum at the same power level as in (f). Inset in (h) shows pulse autocorrelation. Pulse width was calculated to be 5.9 ps.

Fig. 4.
Fig. 4.

Regenerator transfer function for a filter offset of 1.35 nm. Experiment compared to theory, with and without two photon absorption.

Fig. 5.
Fig. 5.

(a) Fiber transfer function (average power), measured with 5.8 ps pulses, clearly showing the effects of nonlinear absorption. Theoretical curves are calculated with and without the effects of TPA considered. (b) Pulse spectra for a peak power of 63 W. Theoretical curves are calculated with and without the effects of TPA loss.

Fig. 6.
Fig. 6.

Pulse spectra at 8 W peak power (a) and regenerator transfer function (b) calculated with and without the effect of dispersion.

Tables (1)

Tables Icon

Table 1. Regenerator parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L OPT 2.4 × L D N ,

Metrics