Abstract

The dynamic aberrations introduced by the human tear film are studied by measuring the topography of the tear film surface on 14 subjects using a curvature sensing setup. The RMS wavefront error variation of the data obtained is presented showing the non-negligible contribution of the tear film to overall eye aberrations. The tear film wavefronts are decomposed in their constituent Zernike terms, showing stronger contributions from 4th order terms and terms with vertical symmetry, and the temporal behaviour of these aberrations is analysed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, �??Supernormal vision and high-resolution retinal imaging through adaptive optics,�?? J. Opt. Soc. Am. A 14, 2884�??2892 (1997).
    [CrossRef]
  2. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, �??Towards wide-field retinal imaging with adaptive optics,�?? Opt. Commun. 230, 225�??238 (2004).
    [CrossRef]
  3. E. J. Fernández, I. Iglesias, and P. Artal, �??Closed-loop adaptive optics in the human eye,�?? Opt. Lett. 26, 746�??748 (2001).
    [CrossRef]
  4. A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Hebert, and M. C. Campbell, �??Adaptive optics scanning laser ophthalmoscopy,�?? Opt. Express 10, 405�??412 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405</a>.
    [PubMed]
  5. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, �??Benefit of higher closed-loop bandwidths in ocular adaptive optics,�?? Opt. Express 11, 2597�??2605 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597</a>. .
    [CrossRef] [PubMed]
  6. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, �??Dynamics of the eye�??s wave aberration,�?? J. Opt. Soc. Am. A 18, 497�??505 (2001).
    [CrossRef]
  7. K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, �??Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system,�?? J. Opt. Soc. Am. A 22, 1241�??1250 (2005).
    [CrossRef]
  8. J. I. Prydal, P. Artal, H. Woon, and F. Campbell, �??Study of human precorneal tear film thickness and structure using laser interferometry,�?? Invest. Ophth. Vis. Sci. 33, 2006�??2011 (1992).
  9. T. J. Licznerski, H. T. Kasprzak, and W. Kowalik, �??Analysis of shearing interferograms of tear film by the use of fast Fourier transforms,�?? J. Biomed. Opt. 3, 32�??37 (1998).
    [CrossRef]
  10. R. Tutt, A. Bradley, C. Begley, and L. N. Thibos, �??Optical and visual impact of tear break-up in human eyes,�?? Invest. Ophth. Vis. Sci. 41, 4117�??4123 (2000).
  11. A. Dubra, C. Paterson, and C. Dainty, �??Study of the tear topography dynamics using a lateral shearing interferometer,�?? Opt. Express 12, 6278�??6288 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6278">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6278</a>.
    [CrossRef] [PubMed]
  12. R. Montés-Micó, J. L. Alió, G. Muñoz, J. J. Pérez-Santoja, and W. N. Charman, �??Postblink changes in total and corneal ocular aberrations,�?? Ophthalmology 111, 758�??767 (2004).
    [CrossRef] [PubMed]
  13. K. Y. Li, G. Yoon, and G. Pan, �??Variability in retinal image quality with tear film behavior after blink,�?? Invest. Ophth. Vis. Sci. 46, E�??Abstract 848 (2005).
  14. S. Gruppetta, L. Koechlin, F. Lacombe, and P. Puget, �??A curvature sensor for the measurement of the static corneal topography and the dynamic tear film topography in the human eye,�?? Opt. Lett. 30, (2005, in press).
    [CrossRef] [PubMed]

Invest. Ophth. Vis. Sci.

J. I. Prydal, P. Artal, H. Woon, and F. Campbell, �??Study of human precorneal tear film thickness and structure using laser interferometry,�?? Invest. Ophth. Vis. Sci. 33, 2006�??2011 (1992).

R. Tutt, A. Bradley, C. Begley, and L. N. Thibos, �??Optical and visual impact of tear break-up in human eyes,�?? Invest. Ophth. Vis. Sci. 41, 4117�??4123 (2000).

K. Y. Li, G. Yoon, and G. Pan, �??Variability in retinal image quality with tear film behavior after blink,�?? Invest. Ophth. Vis. Sci. 46, E�??Abstract 848 (2005).

J. Biomed. Opt.

T. J. Licznerski, H. T. Kasprzak, and W. Kowalik, �??Analysis of shearing interferograms of tear film by the use of fast Fourier transforms,�?? J. Biomed. Opt. 3, 32�??37 (1998).
[CrossRef]

J. Opt. Soc. Am. A

Ophthalmology

R. Montés-Micó, J. L. Alió, G. Muñoz, J. J. Pérez-Santoja, and W. N. Charman, �??Postblink changes in total and corneal ocular aberrations,�?? Ophthalmology 111, 758�??767 (2004).
[CrossRef] [PubMed]

Opt. Commun.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, �??Towards wide-field retinal imaging with adaptive optics,�?? Opt. Commun. 230, 225�??238 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

S. Gruppetta, L. Koechlin, F. Lacombe, and P. Puget, �??A curvature sensor for the measurement of the static corneal topography and the dynamic tear film topography in the human eye,�?? Opt. Lett. 30, (2005, in press).
[CrossRef] [PubMed]

E. J. Fernández, I. Iglesias, and P. Artal, �??Closed-loop adaptive optics in the human eye,�?? Opt. Lett. 26, 746�??748 (2001).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (2135 KB)     
» Media 2: MOV (1100 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Videos showing the evolution of the wavefront transmitted through the tear film at 22Hz for subjects 2 (left, 2MB) and 7 (right, 1MB.)

Fig. 2.
Fig. 2.

Series showing ‘wrinkles’ being formed on the tear film as the eye lids exert pressure on it at the start of the blink, and a brief unstable period after the blink.

Fig. 3.
Fig. 3.

Typical evolution of the RMS wavefront error. (a) Subject 2. (b) Subject 11. (c) Subject 6 with (blue) and without (red) contact lens. The RMS wavefront error for a static calibration surface is also shown (green.)

Fig. 4.
Fig. 4.

Average evolution of the RMS wavefront error over all 2s series following a blink (left, 42 series from 14 subjects) and 6s series following a blink (right, 13 series from 11 subjects) and their standard deviation.

Fig. 5.
Fig. 5.

Typical evolution of Zernike terms for the 3rd and 4th orders (left) and the 5th and 6th orders (right) for subject 11.

Fig. 6.
Fig. 6.

Magnitudes of the Zernike coefficients averaged over all 2s long series (left) and 6s long series (right) collected, with the average of the standard deviations representing variations within each series.

Fig. 7.
Fig. 7.

(a) The RMS difference between the original wavefront and wavefronts reconstructed using different number of Zernike orders. (b) A measured wavefront and (c) the same wavefront reconstructed using Zernike terms upto the 9th order.

Fig. 8.
Fig. 8.

Power spectrum of the RMS wavefront error variation for subject 11: linear axis plot on the left and a log-log plot on the right together with the power spectrum obtained with a static calibration surface (red.) A least squares error linear fit was applied to these spectra.

Metrics