Abstract

We report on the design of a single-polarization single-transverse mode large mode area photonic crystal fiber. By including index-matched stress applying elements in the photonic cladding an ultra-broadband single polarization window is obtained while a large mode field area of ~700 μm2 is maintained. Based on that design, an Yb-doped double-clad photonic crystal fiber is realized that combines low nonlinearity and single polarization properties. A first result of the high power operation using this fiber is demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, J. Limpert, �??The renaissance and bright future of fibre lasers,�?? J. Phys. B: At. Mol. Opt. Phys. 38, 681-693 (2005).
    [CrossRef]
  2. G. Bonati, H. Voelckel, T. Gabler, U. Krause, A. Tünnermann, J. Limpert, A. Liem, T.Schreiber, S. Nolte, H. Zellmer, �??1.53 kW from a single Yb-doped photonic crystal fiber laser,�?? Photonics West, San Jose, Late Breaking Developments, Session 5709-2a (2005).
  3. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, �??131 W 220 fs fiber laser system,�?? (to be published in Opt. Lett. 30 (2005)).
    [CrossRef] [PubMed]
  4. P. St. J. Russell, J.C. Knight, T.A. Birks, B.J. Mangan, W.J. Wadsworth, �??Photonic Crystal Fibres,�?? Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  5. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005).<a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1055"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1055</a>
    [CrossRef] [PubMed]
  6. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, "Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313</a>
    [CrossRef] [PubMed]
  7. J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, H. R. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express 12, 956-960 (2004)<a href="ttp://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956">ttp://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956</a>
    [CrossRef] [PubMed]
  8. T.A. Birks, J.C. Knight, P.St.J. Russell, �??Endlessly single-mode photonic crystal fibre,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  9. J. R. Folkenberg, M. D. Nielsen, C. Jakobsen, �??Broadband single-polarization photonic crystal fiber,�?? Opt. Lett. 30, 1446-1448 (2005).
    [CrossRef] [PubMed]
  10. T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, A. Tünnermann, "Stress-induced birefringence in large-mode-area micro-structured optical fibers," Opt. Express 13, 3637-3646 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3637">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3637</a>
    [CrossRef] [PubMed]
  11. <a href="www.crystal-fibre.com">www.crystal-fibre.com</a>
  12. N. A. Mortensen, J. R. Folkenberg, �??Low-loss criterion and effective area considerations for photonic crystal fibres,�?? J. Opt. A: Pure Appl. Opt. 5, 163-167 (2003).
    [CrossRef]
  13. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, K. P. Hansen, �??Modal cutoff and the V parameter in photonic crystal fibers,�?? Opt. Lett. 28, 1879 (2003).
    [CrossRef] [PubMed]
  14. S. G. Johnson, J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>
    [CrossRef] [PubMed]
  15. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover, New York, 1944).
  16. Z. Zhu, T. G. Brown, �??Stress-induced birefringence in microstructured optical fibers,�?? Opt. Lett. 28, 2306-2308 (2003).
    [CrossRef] [PubMed]
  17. P. L. Chu, R. A. Sammut, �??Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,�?? J. Lightwave Technol. LT-2, 650-662 (1984).
  18. Noda, K. Okamoto, Y. Sasaki, �??Polarization-maintaining fibers and their applications,�?? J. Lightwave Technol. LT-4, 1071-1088 (1986).
    [CrossRef]
  19. W. Eickhoff, �??Stress-induced single-polarization single-mode fiber,�?? Opt. Lett. 7, 629-631 (1982).
    [CrossRef] [PubMed]
  20. A. W. Snyder, F. Rühl, �??Single-mode, single-polarization fibers made of birefringenct material,�?? J. Opt. Soc. Am. 73, 1165-1174 (1983).
    [CrossRef]
  21. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, D. Bonacinni, �??Predicting macrobending loss for large-mode area photonic crystal fibers,�?? Opt. Express 12, 1775 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1775"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1775</a>
    [CrossRef] [PubMed]
  22. F. Zhang, J. W. Y. Lit, �??Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,�?? Appl. Opt. 32, 2213-2218 (1993).
    [CrossRef] [PubMed]

Appl. Opt.

J. Lightwave Technol.

P. L. Chu, R. A. Sammut, �??Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,�?? J. Lightwave Technol. LT-2, 650-662 (1984).

Noda, K. Okamoto, Y. Sasaki, �??Polarization-maintaining fibers and their applications,�?? J. Lightwave Technol. LT-4, 1071-1088 (1986).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

N. A. Mortensen, J. R. Folkenberg, �??Low-loss criterion and effective area considerations for photonic crystal fibres,�?? J. Opt. A: Pure Appl. Opt. 5, 163-167 (2003).
[CrossRef]

J. Opt. Soc. Am

A. W. Snyder, F. Rühl, �??Single-mode, single-polarization fibers made of birefringenct material,�?? J. Opt. Soc. Am. 73, 1165-1174 (1983).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, J. Limpert, �??The renaissance and bright future of fibre lasers,�?? J. Phys. B: At. Mol. Opt. Phys. 38, 681-693 (2005).
[CrossRef]

Opt. Express

S. G. Johnson, J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>
[CrossRef] [PubMed]

J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, H. R. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express 12, 956-960 (2004)<a href="ttp://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956">ttp://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956</a>
[CrossRef] [PubMed]

J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, "Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313</a>
[CrossRef] [PubMed]

M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, D. Bonacinni, �??Predicting macrobending loss for large-mode area photonic crystal fibers,�?? Opt. Express 12, 1775 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1775"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1775</a>
[CrossRef] [PubMed]

J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005).<a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1055"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1055</a>
[CrossRef] [PubMed]

T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, A. Tünnermann, "Stress-induced birefringence in large-mode-area micro-structured optical fibers," Opt. Express 13, 3637-3646 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3637">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3637</a>
[CrossRef] [PubMed]

Opt. Lett.

Photonics West 2005

G. Bonati, H. Voelckel, T. Gabler, U. Krause, A. Tünnermann, J. Limpert, A. Liem, T.Schreiber, S. Nolte, H. Zellmer, �??1.53 kW from a single Yb-doped photonic crystal fiber laser,�?? Photonics West, San Jose, Late Breaking Developments, Session 5709-2a (2005).

Science

P. St. J. Russell, J.C. Knight, T.A. Birks, B.J. Mangan, W.J. Wadsworth, �??Photonic Crystal Fibres,�?? Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other

<a href="www.crystal-fibre.com">www.crystal-fibre.com</a>

A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover, New York, 1944).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Design and parameters of a micro-structured fiber: Λ - pitch, d - air-hole diameter

Fig. 2.
Fig. 2.

Design and parameters of polarization maintaining large mode area (seven missing holes) photonic crystal fiber comprising index-matched stress applying elements (yellow) as part of the photonic cladding.

Fig. 3.
Fig. 3.

Inner cladding formed by air-holes providing a large single mode core.

Fig. 4.
Fig. 4.

Inner cladding formed by Boron-doped silica rods providing a large single mode core, which is matched to that of Fig. 3.

Fig. 5.
Fig. 5.

(a) Illustration of the guidelines for maximizing stress induced birefringence in PANDA type fiber. (b–e): Calculated stress induced birefringence B: fiber with D=400 μm and step index core (b), D=400 μm but photonic inner cladding (c), fiber design with index matched stress applying parts and D=170 μm (d,e), see text for details.

Fig. 6.
Fig. 6.

Effect of changing the relative hole size of the boron-doped SAPs on the achievable birefringence.

Fig. 7.
Fig. 7.

Effect of removing rows of SAPs on the achievable birefringence. The color scaling is the same as Fig. 5.

Fig. 8.
Fig. 8.

Microscope images of the PCF (PassivePCF01) where 20 holes are replaced by index-matched stress applying parts

Fig. 9.
Fig. 9.

Microscope images of the PCF (PassivePCF02) where 6 holes are replaced by index-matched stress applying parts

Fig. 10.
Fig. 10.

Transmission spectra for the two polarization states using the fiber PassivePCF01 and different bending diameters of (a) 1.4 m, (b) 0.25 m and (c) 0.15 m.

Fig. 11.
Fig. 11.

Transmission spectrum (a) and birefringence (b)measured in the fiber PassivePCF02 with d/Λ=0.2, a bending diameter of 0.5 m and a length of 2.5 m.

Fig. 12.
Fig. 12.

Polarizing window dependence on dair-core/Ω and the bending diameter.

Fig. 13.
Fig. 13.

SEM image of the Yb-doped air-clad photonic crystal fiber with six index-matched stress applying parts.

Fig. 14.
Fig. 14.

Simple setup for characterizing the polarization properties of the fibers.

Fig. 15.
Fig. 15.

Output imaged onto a CCD showing an almost Gaussian mode profile.

Fig. 16.
Fig. 16.

Output characteristic of the non-polarization maintaining reference fiber.

Fig. 17.
Fig. 17.

Output characteristic of the single polarization photonic crystal fiber.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ = · ( [ ε x ε y γ xy ] [ α α 0 ] ( 1 + v ) ( T T ref ) ) = 0 wh ere σ = D ε
B = ( C 2 C 1 ) ( σ x σ y )
B av = ( C 2 C 1 ) ( σ x σ y ) r d r d φ

Metrics