Abstract

We present an optical interference model to create chiral microstructures (spirals) and its realization in photoresist using holographic lithography. The model is based on the interference of six equally-spaced circumpolar linear polarized side beams and a circular polarized central beam. The pitch and separation of the spirals can be varied by changing the angle between the side beams and the central beam. The realization of the model is carried out using the 325 nm line of a He-Cd laser and spirals of sub-micron size are fabricated in photoresist.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. M. Soukoulis, Photonic Band Gaps and Localization, (Plenum, New York, 1993).
  2. C. M. Soukoulis, Photonic band gap materials, (Kluwer, Dordrecht, 1996).
  3. J. D. Joannopoulos, R. D. Meade and J. Winn, Photonic crystal, (Princeton, 1995).
  4. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  5. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  6. J. B. Pendry, �??Photonic band structures,�?? J. Mod. Opt. 41, No. 2, 209-229 (1994).
    [CrossRef]
  7. A. van Blaaderen, �??Opals in a new light,�?? Science 282, 887-888 (1998); and references therein.
    [CrossRef]
  8. C. C. Cheng, V. Arbet-Engels, A. Scherer and E. Yablonovitch , �??Nanofabricated three dimensional photonic crystals operating at topical wavelenghts,�?? Physica Scr. T68, 17-20 (1996).
    [CrossRef]
  9. S. Noda and A. Sasaki, �??New realization method for three-dimensional photonic crystal in the optical wavelength region: Experimental Consideration,�?? Jpn. J. Appl. Phys. 36, 1907-1911(1997).
    [CrossRef]
  10. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz and J. Bur, �??A three-dimensional photonic crystal operating at infrared wavelengths ,�?? Nature 394, 251-253 (1998).
    [CrossRef]
  11. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography,�?? Nature 404, 53-56 (2000).
    [CrossRef] [PubMed]
  12. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang and W. Y. Tam, �??Three-dimensional photonic crystals fabricated by visible light holographic lithography,�?? Appl. Phys. Lett. 82, 2212-2214 (2003).
    [CrossRef]
  13. Y. V. Miklyaev el al. �??Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,�?? Appl. Phys. Lett. 82, 1284-1286 (2003).
    [CrossRef]
  14. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan and P. Sheng, �??Large-area two-dimensional mesoscale quasi-crystals,�?? Adv. Mat. 15, 1526-1528 (2003).
    [CrossRef]
  15. A. Chutinan and S. Noda, �??Spiral three-dimensional photonic-band-gap structure,�?? Phys. Rev. B 57, 2006-2008 (1997).
    [CrossRef]
  16. O. Toader and S. John, �??Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,�?? Science 292, 1133-1135 (2001).
    [CrossRef] [PubMed]
  17. J. B. Pendry, �??A chiral route to negative refraction,�?? Science 306, 1353-1355 (2004).
    [CrossRef] [PubMed]
  18. K. Robbie, J. C. Sit, and M. J. Brett, �??Advanced techniques for glancing angle deposition,�?? J. Vac. Sci. Technology B 16, 1115-1122 (1998).
    [CrossRef]
  19. M. Deuble,G. Von Freymann, M. Wegener, S. Pereura, K. Busch and C. M. Soukoulis �??Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,�?? Nature Mater. 3, 444-447 (2004).
    [CrossRef]
  20. M. Deubel, M. Wegener, A. Kaso and S. John, �??Direct laser writing and characterization of �??Slatted Pore�?? photonic crystals,�?? App. Phys. Lett. 85, 1895-1897 (2004).
    [CrossRef]
  21. K. Robbie, D. J. Broer and M. J. Brett, �??Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,�?? Nature 399, 764-766 (1999).
    [CrossRef]
  22. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, �??Fabrication of tetragonal square spiral photonic crystals,�?? Nano Lett. 2, 59-62 (2002).
    [CrossRef]
  23. M. O. Jensen and M. J. Brett, �??Square spiral 3D photonic bandgap crystals at telecommunications frequencies,�?? Opt. Express 13, 3348-3354 (2005).
    [CrossRef] [PubMed]
  24. S. Maruo, O. Nakamura, and S. Kawata, �??Three-dimensional microfabrication with two-photon-absorbed photopolymerization,�?? Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  25. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa, �??Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,�?? Adv. Mater. 17, 541-545 (2005).
    [CrossRef]
  26. P. W. Wei, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, �??Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,�?? Adv. Mater. 12, 1438-1441, (2000).
    [CrossRef]
  27. C. Y. M. Chan, O. Toader, and S. John, �??Photonic band gap templating using optical interference lithography,�?? Phys. Rev. E 71, 0466051-04660518 (2005).
    [CrossRef]
  28. O. M. Roche, D. N. Sharp, E. R. Dedman, A. J. Turberfield, C. F. Blanford, and R. G. Denning, �??Optically active photonic crystals by holographic lithography,�?? Abstract in PECS-VI, (2005).
  29. C. W. Lee and C. T. Chan, �??Polarization gap in spiral photonic structures,�?? (2005), <a href="http://arxiv.org/ftp/physics/papers/0508/0508015.pdf.">http://arxiv.org/ftp/physics/papers/0508/0508015.pdf.</a>

Adv. Mat.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan and P. Sheng, �??Large-area two-dimensional mesoscale quasi-crystals,�?? Adv. Mat. 15, 1526-1528 (2003).
[CrossRef]

Adv. Mater.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa, �??Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,�?? Adv. Mater. 17, 541-545 (2005).
[CrossRef]

P. W. Wei, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, �??Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,�?? Adv. Mater. 12, 1438-1441, (2000).
[CrossRef]

Appl. Phys. Lett.

M. Deubel, M. Wegener, A. Kaso and S. John, �??Direct laser writing and characterization of �??Slatted Pore�?? photonic crystals,�?? App. Phys. Lett. 85, 1895-1897 (2004).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang and W. Y. Tam, �??Three-dimensional photonic crystals fabricated by visible light holographic lithography,�?? Appl. Phys. Lett. 82, 2212-2214 (2003).
[CrossRef]

Y. V. Miklyaev el al. �??Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,�?? Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

J. Mod. Opt.

J. B. Pendry, �??Photonic band structures,�?? J. Mod. Opt. 41, No. 2, 209-229 (1994).
[CrossRef]

J. Vac. Sci. Technology B

K. Robbie, J. C. Sit, and M. J. Brett, �??Advanced techniques for glancing angle deposition,�?? J. Vac. Sci. Technology B 16, 1115-1122 (1998).
[CrossRef]

Jpn. J. Appl. Phys.

S. Noda and A. Sasaki, �??New realization method for three-dimensional photonic crystal in the optical wavelength region: Experimental Consideration,�?? Jpn. J. Appl. Phys. 36, 1907-1911(1997).
[CrossRef]

Nano Lett.

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, �??Fabrication of tetragonal square spiral photonic crystals,�?? Nano Lett. 2, 59-62 (2002).
[CrossRef]

Nature

K. Robbie, D. J. Broer and M. J. Brett, �??Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,�?? Nature 399, 764-766 (1999).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz and J. Bur, �??A three-dimensional photonic crystal operating at infrared wavelengths ,�?? Nature 394, 251-253 (1998).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography,�?? Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Nature Mater

M. Deuble,G. Von Freymann, M. Wegener, S. Pereura, K. Busch and C. M. Soukoulis �??Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,�?? Nature Mater. 3, 444-447 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

A. Chutinan and S. Noda, �??Spiral three-dimensional photonic-band-gap structure,�?? Phys. Rev. B 57, 2006-2008 (1997).
[CrossRef]

Phys. Rev. E.

C. Y. M. Chan, O. Toader, and S. John, �??Photonic band gap templating using optical interference lithography,�?? Phys. Rev. E 71, 0466051-04660518 (2005).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Physica Scr. T

C. C. Cheng, V. Arbet-Engels, A. Scherer and E. Yablonovitch , �??Nanofabricated three dimensional photonic crystals operating at topical wavelenghts,�?? Physica Scr. T68, 17-20 (1996).
[CrossRef]

Science

A. van Blaaderen, �??Opals in a new light,�?? Science 282, 887-888 (1998); and references therein.
[CrossRef]

O. Toader and S. John, �??Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,�?? Science 292, 1133-1135 (2001).
[CrossRef] [PubMed]

J. B. Pendry, �??A chiral route to negative refraction,�?? Science 306, 1353-1355 (2004).
[CrossRef] [PubMed]

Other

C. M. Soukoulis, Photonic Band Gaps and Localization, (Plenum, New York, 1993).

C. M. Soukoulis, Photonic band gap materials, (Kluwer, Dordrecht, 1996).

J. D. Joannopoulos, R. D. Meade and J. Winn, Photonic crystal, (Princeton, 1995).

O. M. Roche, D. N. Sharp, E. R. Dedman, A. J. Turberfield, C. F. Blanford, and R. G. Denning, �??Optically active photonic crystals by holographic lithography,�?? Abstract in PECS-VI, (2005).

C. W. Lee and C. T. Chan, �??Polarization gap in spiral photonic structures,�?? (2005), <a href="http://arxiv.org/ftp/physics/papers/0508/0508015.pdf.">http://arxiv.org/ftp/physics/papers/0508/0508015.pdf.</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The 6+1 beam configuration setup.

Fig. 2.
Fig. 2.

Intensity contour surfaces of (a) and (c) left handed and (b) and (d) right handed spirals using the 6+1 beams interference of Eq. (3).

Fig.3.
Fig.3.

SEM images of spirals: (a) overall (b) close-up views. (c) Structure with out off phase interference. Scale bar is: (a) 2 μm, (b) 1 μm, and (c) 1 μm..

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k n = k ( cos 2 ( n 1 ) π 6 sin φ , sin 2 ( n 1 ) π 6 sin φ , cos φ ) ,
k 0 = k ( 0 , 0 , 1 ) .
I ( r ) = n , m E n e i k n · r i δ n · E m * e i k m · r + i δ m ,
E 0 = E 0 2 ( 1 , ± i , 0 ) .

Metrics