Abstract

We demonstrate a picosecond source of correlated photon pairs using a micro-structured fibre with zero dispersion around 715 nm wavelength. The fibre is pumped in the normal dispersion regime at ~708 nm and phase matching is satisfied for widely spaced parametric wavelengths. Here we generate up to 107 photon pairs per second in the fibre at wavelengths of 587 nm and 897 nm, while on collecting this light in single-mode-fibre-coupled Silicon avalanche diode photon counting detectors, we detect ~3.2×105 coincidences per second at pump power 0.5 mW.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. G. Rarity, Quantum Communications and Beyond, Royal Society Philosophical Transactions, 361, 1507-18 (2003).
    [CrossRef]
  2. S. Gasparoni, J-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, �??Realization of a Photonic Controlled-NOT Gate Sufficient for Quantum Computation,�?? Phys. Rev. Lett. 93, 020504 (2004).
    [CrossRef] [PubMed]
  3. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer & A. Zeilinger, �??Experimental one-way quantum computing,�?? Nature 434, 169 (2005).
    [CrossRef] [PubMed]
  4. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, �??Quantum Cryptography,�?? Rev. Mod. Phys. 74, 145 (2002).
    [CrossRef]
  5. H. Weinfurter, �??Quantum Communications, �??Quantum communication with entangled photons,�?? Adv. At. Mol. Opt. Phys. 42, 489 (2000).
    [CrossRef]
  6. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, �??New High Intensity Source of Entangled Photon Pairs,�?? Phys. Rev. Lett 75, 4337 (1995).
    [CrossRef] [PubMed]
  7. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, �??High Efficiency entangled pair collection in type II parametric fluorescence,�?? Phys. Rev. Lett. 85, 290�??293 (2000).
    [CrossRef] [PubMed]
  8. R. Andrews, E. R. Pike, and S. Sarkar, "Optimal coupling of entangled photons into single-mode optical fibers," Opt. Express 12, 3264-3269 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3264">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3264</a>
    [CrossRef] [PubMed]
  9. G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster and J. G.Rarity, �??Parametric fluorescence in periodically poled silica fibres,�?? Appl. Phys. Lett. 75, 2356 (1999).
    [CrossRef]
  10. S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, N. Gisin, �??Highly efficient photon-pair source using periodically poled lithium niobate waveguide,�?? Electron. Lett. 37, 26-28 (2001).
    [CrossRef]
  11. A. B. U�??Ren, C. Silberhorn, K. Banaszek, and I. A.Walmsley, �??Efficient Conditional Preparation of High-Fidelity Single Photon States for Fiber-Optic Quantum Networks,�?? Phys. Rev. Lett. 93, 601 (2004)
  12. G. P. Agrawal, Nonlinear fiber optics (Academic, 1995).
  13. L. J. Wang, C. K. Hong, and S. R. Friberg, �??Generation of correlated photons via four-wave mixing in optical fibres,�?? J. Opt. B: Quantum and Semiclass. Opt. 3, 346-352 (2001).
    [CrossRef]
  14. M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, �??All-fibre photon pair source for quantum communications,�?? IEEE Photonics Technol Lett. 14, 983-5 (2002).
    [CrossRef]
  15. X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,�?? Opt. Express 12, 3737-3745 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737</a>
    [CrossRef] [PubMed]
  16. J. E. Sharping, J. Chen, X. Li, P. Kumar, �??Quantum Correlated twin photons from microstructured fibre,�?? Opt. Express 12, 3086-3094 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086</a>
    [CrossRef] [PubMed]
  17. X. Li, P. L. Voss, & P. Kumar, �??Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,�?? arXiv:quant-ph/0402191 (Feb 2004).
  18. H. Takesue and K. Inoue, �??Generation of polarization-entangled photon pairs and violation of Bell�??s inequality using spontaneous four-wave mixing in a fiber loop,�?? Phys. Rev. A 70, 031802 (R) (2004).
    [CrossRef]
  19. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, P. St. J. Russell , �??Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,�?? Opt. Express 12, 299-309 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>
    [CrossRef] [PubMed]
  20. W. J.Wadsworth, P. St.J. Russell, J. G. Rarity, J. Duligall, J. R. Fulconis: �??Single-mode source of correlated photon pairs from photonic crystal fibre,�?? International Quantum Electronics Conference, CLEO/IQEC San Francisco, paper IPDA7 (2004)
  21. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534</a>
    [CrossRef] [PubMed]
  22. Dougherty D J, Kärtner F X, Haus H A and Ippen E P 1995 "Measurement of the Raman gain spectrum of optical fibers" Opt. Lett. 20 31-3
    [PubMed]
  23. J G Rarity, �??Interference of single photons from separate sources,�?? in FUNDAMENTAL PROBLEMS IN QUANTUM THEORY D M Greenberger and A Zeilinger eds, Annals of the New York Academy of Sciences, 1995 p.624.
  24. J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, P.St.J. Russell, �??Anomalous dispersion in photonic crystal fiber,�?? IEEE Photonics Technol Lett. 12 (7), 807-809 (2000).
    [CrossRef]
  25. J G Rarity, K D Ridley and P R Tapster, �??An absolute measurement of detector quantum efficiency using parametric down-conversion,�?? Appl. Opt. 26, 4616-4619 (1987)
    [CrossRef] [PubMed]
  26. Perkin Elmer SPCM data sheet: <a href="http://optoelectronics.perkinelmer.com/content/Datasheets/SPCM-AQR.pdf">http://optoelectronics.perkinelmer.com/content/Datasheets/SPCM-AQR.pdf</a>
  27. During the preparation of the manuscript other groups have obtained comparable brightness in similar fibres: see J. Fan, A. Migdall and L-J Wang, quant-ph 0505211
  28. S.G. Leon-Saval, T.A. Birks, N.Y. Joly, A.K. George, W.J. Wadsworth, G. Kakarantzas and P.St.J. Russell, �??Splice-free interfacing of photonic crystal fibres,�?? Opt. Lett. 30 (13), 1629-1631, (2005)
    [CrossRef] [PubMed]

Adv. At. Mol. Opt. Phys.

H. Weinfurter, �??Quantum Communications, �??Quantum communication with entangled photons,�?? Adv. At. Mol. Opt. Phys. 42, 489 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

G. Bonfrate, V. Pruneiri, P. Kazanski, P. R. Tapster and J. G.Rarity, �??Parametric fluorescence in periodically poled silica fibres,�?? Appl. Phys. Lett. 75, 2356 (1999).
[CrossRef]

CLEO/IQEC

W. J.Wadsworth, P. St.J. Russell, J. G. Rarity, J. Duligall, J. R. Fulconis: �??Single-mode source of correlated photon pairs from photonic crystal fibre,�?? International Quantum Electronics Conference, CLEO/IQEC San Francisco, paper IPDA7 (2004)

Electron. Lett.

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. de Micheli, D. B. Ostrowski, N. Gisin, �??Highly efficient photon-pair source using periodically poled lithium niobate waveguide,�?? Electron. Lett. 37, 26-28 (2001).
[CrossRef]

IEEE Photonics Technol Lett.

M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, �??All-fibre photon pair source for quantum communications,�?? IEEE Photonics Technol Lett. 14, 983-5 (2002).
[CrossRef]

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, P.St.J. Russell, �??Anomalous dispersion in photonic crystal fiber,�?? IEEE Photonics Technol Lett. 12 (7), 807-809 (2000).
[CrossRef]

J. Opt. B: Quantum and Semiclass

L. J. Wang, C. K. Hong, and S. R. Friberg, �??Generation of correlated photons via four-wave mixing in optical fibres,�?? J. Opt. B: Quantum and Semiclass. Opt. 3, 346-352 (2001).
[CrossRef]

Nature

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral1, M. Aspelmeyer & A. Zeilinger, �??Experimental one-way quantum computing,�?? Nature 434, 169 (2005).
[CrossRef] [PubMed]

Opt. Express

J. E. Sharping, J. Chen, X. Li, P. Kumar, �??Quantum Correlated twin photons from microstructured fibre,�?? Opt. Express 12, 3086-3094 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086</a>
[CrossRef] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, P. St. J. Russell , �??Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,�?? Opt. Express 12, 299-309 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>
[CrossRef] [PubMed]

R. Andrews, E. R. Pike, and S. Sarkar, "Optimal coupling of entangled photons into single-mode optical fibers," Opt. Express 12, 3264-3269 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3264">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3264</a>
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,�?? Opt. Express 12, 3737-3745 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737</a>
[CrossRef] [PubMed]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534</a>
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

H. Takesue and K. Inoue, �??Generation of polarization-entangled photon pairs and violation of Bell�??s inequality using spontaneous four-wave mixing in a fiber loop,�?? Phys. Rev. A 70, 031802 (R) (2004).
[CrossRef]

Phys. Rev. Lett

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y.H. Shih, �??New High Intensity Source of Entangled Photon Pairs,�?? Phys. Rev. Lett 75, 4337 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, �??High Efficiency entangled pair collection in type II parametric fluorescence,�?? Phys. Rev. Lett. 85, 290�??293 (2000).
[CrossRef] [PubMed]

S. Gasparoni, J-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, �??Realization of a Photonic Controlled-NOT Gate Sufficient for Quantum Computation,�?? Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef] [PubMed]

A. B. U�??Ren, C. Silberhorn, K. Banaszek, and I. A.Walmsley, �??Efficient Conditional Preparation of High-Fidelity Single Photon States for Fiber-Optic Quantum Networks,�?? Phys. Rev. Lett. 93, 601 (2004)

Rev. Mod. Phys.

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, �??Quantum Cryptography,�?? Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Royal Society Philosophical Transactions

J. G. Rarity, Quantum Communications and Beyond, Royal Society Philosophical Transactions, 361, 1507-18 (2003).
[CrossRef]

Other

G. P. Agrawal, Nonlinear fiber optics (Academic, 1995).

X. Li, P. L. Voss, & P. Kumar, �??Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,�?? arXiv:quant-ph/0402191 (Feb 2004).

J G Rarity, �??Interference of single photons from separate sources,�?? in FUNDAMENTAL PROBLEMS IN QUANTUM THEORY D M Greenberger and A Zeilinger eds, Annals of the New York Academy of Sciences, 1995 p.624.

Perkin Elmer SPCM data sheet: <a href="http://optoelectronics.perkinelmer.com/content/Datasheets/SPCM-AQR.pdf">http://optoelectronics.perkinelmer.com/content/Datasheets/SPCM-AQR.pdf</a>

During the preparation of the manuscript other groups have obtained comparable brightness in similar fibres: see J. Fan, A. Migdall and L-J Wang, quant-ph 0505211

Supplementary Material (1)

» Media 1: GIF (56 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Electron microscope image of the PCF used with core diameter d=2 μm, λ0 = 715 nm

Fig. 2.
Fig. 2.

Nonlinear phase-matching diagram for the process 2ωp → ωs + ωi. The curve does not change significantly in the range Pp = 0-3 W. Beyond the 716 nm “degeneracy” point we move into the modulation instability region where photon pairs can be created close to the pump wavelength (see [14–19]).

Fig. 3.
Fig. 3.

Optical layout. Laser, 708 nm Ti:Sa laser; P, prism; HWP, halfwave plate; PCF, 2 m of photonic crystal fiber; M, protected silver mirror (R>95%); DM, dichroic mirror (centered@700nm, T>85%, R>90%); F1, 570 nm band-pass filter, bandwidth 40 nm, T=80%; F2, 880 nm band-pass filter, bandwidth 40 nm, T=80%; APD, Silicon single photon detector.

Fig. 4.
Fig. 4.

Fluorescence spectrum of the signal photons. The measurement was integrated over 10 seconds. The number of ADC counts is proportional to the number of photons detected by the cooled camera in wavelength-bins of width 36 pm. The photon spectrum is centered at 587 nm and features a FWHM bandwidth of 2.7 nm. The small peak at 598 nm is attributed to unwanted background light or a detector fault. It is visible when the laser is blocked.

Fig. 5.
Fig. 5.

Fluorescence spectrum of the idler photons. The measurement was integrated over 10 seconds. The photon spectrum is centered at 897 nm and features a FWHM bandwidth 5.5 nm. Here the wavelength-bin width is 36 pm.

Fig. 6.
Fig. 6.

Time interval histogram showing the coincident photon detection peak and also a zoom on one of the accidental coincidence peak for different pump powers. Here the time between two peaks reflects the pump laser repetition rate. However the width of the peaks is limited by the response time of the detectors which is typically hundreds of picoseconds (rather than the actual duration of the pump pulses). The instrument displays the probability that a start pulse is stopped within a given time bin. Here the time-bin width is 156 ps. To step through the pump powers press Ctrl + click on the graph. [Media 1]

Fig. 7.
Fig. 7.

Net coincidence rate as function of the pump power. The fit is purely quadratic (no linear term) C=AP2 with constant A=1.21×106 /sec/mW2. Discrepancies at high powers are due to saturation effects in both the detectors and coincidence measuring apparatus.

Tables (1)

Tables Icon

Table 1. Summary of results for different pump powers

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

k i + k s 2 k p + 2 γ P p = 0
ω i + ω s = 2 ω p
γ = 2 π n 2 λ A eff
N s = η s η opt r + B s
N i = η i η opt r + B i
C raw = η s η i η opt η opt r + C b
η sM lump = C raw C b N i
η iM lump = C raw C b N s
r = C raw C b η iM lump η sM lump
η sM lump η sP lump = ( 1 B i N i )
η iM lump η iP lump = ( 1 B s N s )

Metrics