Abstract

Polarization-division multiplexed (PDM) optical signals can potentially be demultiplexed by coherent detection and digital signal processing without using optical dynamic polarization control at the receiver. In this paper, we show that optical communications using PDM is analogous to wireless communications using multiple-input-multiple-output (MIMO) antennae and thus algorithms for channel estimation in wireless MIMO can be ready applied to optical polarization MIMO (PMIMO). Combined with frequency offset and phase estimation algorithms, simulations show that PDM quadrature phase-shift keying signals can be coherently detected by the proposed scheme using commercial semiconductor lasers while no optical phase locking and polarization control are required. This analogy further suggests the potential application of space-time coding in wireless communications to optical polarization MIMO systems and relates the problem of polarization-mode dispersion in fiber transmission to the multi-path propagation in wireless communications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. G. Taylor, �??Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,�?? IEEE Photonics Technol. Lett. 16, 674-676 (2004).
    [CrossRef]
  2. A. H. Gnauck, J. Sinsky, P. J. Winzer, and S. Chandrasekhar, �??Linear microwave-domain dispersion compensation of 10-Gb/s signals using heterodyne detection,�?? in Proceedings of Optical Fiber Communications Conference 2005, paper PDP31.
  3. D-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, �??Unrepeated 210-km transmission with coherent detection and digital signal processing of 20-Gb/s QPSK signal,�?? in Proceedings of Optical Fiber Communications Conference 2005, paper OTuL4.
  4. B. Glance, �??Polarization independent coherent optical receiver,�?? J. Lightwave Technol. 5, 274-276 (1987).
    [CrossRef]
  5. D. Gesbert, M. Shafi, D-S Shiu, P. J. Smith, and A. Naguib, �??From theory to practice: an overview of MIMO space-time coded wireless systems,�?? IEEE J. Sel. Areas Commun. 21, 281-302 (2003).
    [CrossRef]
  6. A.H. Sayed, Fundamentals of Adaptive Filtering, (Wiley, NY, 2003).
  7. M. Tseytlin, O. Ritterbush, and A. Salamon, �??Digital, endless polarization control for polarization multiplexed fiber-optic communications,�?? in Proceedings of Optical Fiber Communications Conference 2003, vol. 1, pp. 103-103.
  8. S. G. Evangelides Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, �??Polarization multiplexing with solitons,�?? J. Lightwave Technol. 10, 28-35 (1992).
    [CrossRef]

IEEE J. Sel. Areas Commun. (1)

D. Gesbert, M. Shafi, D-S Shiu, P. J. Smith, and A. Naguib, �??From theory to practice: an overview of MIMO space-time coded wireless systems,�?? IEEE J. Sel. Areas Commun. 21, 281-302 (2003).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. G. Taylor, �??Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,�?? IEEE Photonics Technol. Lett. 16, 674-676 (2004).
[CrossRef]

J. Lightwave Technol. (2)

B. Glance, �??Polarization independent coherent optical receiver,�?? J. Lightwave Technol. 5, 274-276 (1987).
[CrossRef]

S. G. Evangelides Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, �??Polarization multiplexing with solitons,�?? J. Lightwave Technol. 10, 28-35 (1992).
[CrossRef]

Proceedings of Optical Fiber Comm. (3)

M. Tseytlin, O. Ritterbush, and A. Salamon, �??Digital, endless polarization control for polarization multiplexed fiber-optic communications,�?? in Proceedings of Optical Fiber Communications Conference 2003, vol. 1, pp. 103-103.

A. H. Gnauck, J. Sinsky, P. J. Winzer, and S. Chandrasekhar, �??Linear microwave-domain dispersion compensation of 10-Gb/s signals using heterodyne detection,�?? in Proceedings of Optical Fiber Communications Conference 2005, paper PDP31.

D-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, �??Unrepeated 210-km transmission with coherent detection and digital signal processing of 20-Gb/s QPSK signal,�?? in Proceedings of Optical Fiber Communications Conference 2005, paper OTuL4.

Other (1)

A.H. Sayed, Fundamentals of Adaptive Filtering, (Wiley, NY, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of an optical polarization MIMO system. PBS: polarization beam splitter; PBC: polarization beam combiner; LO: local oscillator.

Fig. 2.
Fig. 2.

Signal constellations. (a) Received signal; (b) after applying the estimated Jones matrix. No laser phase noise and frequency offset.

Fig. 3.
Fig. 3.

Learning curves of the LMS algorithm used to estimate the Jones matrix.

Fig. 4.
Fig. 4.

Signal constellations. (a) Received signal; (b) step-1: remove polarization crosstalk; (c) step-2: phase estimation. 1 MHz laser linewidth and no frequency offset.

Fig. 5.
Fig. 5.

Signal constellations. (a) Received signal; (b) step-1: remove polarization crosstalk; (c) step-2: phase estimation. 1 MHz laser linewidth and 10 MHz frequency offset.

Fig. 6.
Fig. 6.

Signal constellations. (a) Received signal; (b) step-1: frequency estimation; (c) step-2: remove polarization crosstalk; (d) step-3: phase estimation. 1 MHz linewidth and 1 GHz offset.

Fig. 7.
Fig. 7.

Signal constellations. (a) Received signal; (b) step-1: frequency estimation; (c) step-2: remove polarization crosstalk; (d) step-3: phase estimation. 1 MHz linewidth and 1 GHz offset.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ' x E ' y = L ( J 11 J 12 J 21 J 22 ) E x E y = J L E x E y
J i = J i 1 + μ × [ E ' x E ' y | i J i 1 L E x E y | i ] × L E x E y | ' i , i 0 , J 1 = initial guess

Metrics