Abstract

We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this one is its continuous tunability due to the fact that the used LC does not exhibit reverse tilt domain defects and threshold effects. Furthermore, the dual-frequency features of the LC enables electrical control of the spectral position of the bandgaps towards both shorter and longer wavelengths in the same device. We investigate the dynamics of this device and demonstrate a birefringence controller based on this principle.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. St. J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003)
    [CrossRef] [PubMed]
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998)
    [CrossRef] [PubMed]
  3. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, �??Microstructured optical fiber devices, �?? Opt. Express 9, 698-713 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a>
    [CrossRef] [PubMed]
  4. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, �??Tunable photonic band gap fiber,�?? in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466-468
  5. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, �??Optical devices based on liquid crystal photonic bandgap fibers,�?? Opt. Express 11, 2589-2596 (2003),<a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589 </a>
    [CrossRef] [PubMed]
  6. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, �??Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,�?? IEEE Photonics Technol. Lett. 17, 819-821 (2005)
    [CrossRef]
  7. F. Du, Y. Lu and S. Wu, �??Electrically tunable liquid-crystal photonic crystal fiber,�?? Appl. Phys. Lett. 85, 2181-2183 (2004)
    [CrossRef]
  8. V. G. Chigrinov, Liquid Crystal Devices, (Artech-House, 1999)
  9. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran and C. M. de Sterke, �??Application of an ARROW model for designing tunable photonic devices,�?? Opt. Express 12, 1540-1550, (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1540%20%20">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1540%20%20 </a>
    [CrossRef] [PubMed]
  10. C. Kerbage and B. J. Eggleton, �??Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,�?? Opt. Express 10, 246-255, (2002) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-246">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-246</a>
    [PubMed]
  11. T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. Wu, �??All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,�?? Opt. Express 12, 5857-5871 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5857">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5857</a>

Appl. Phys. Lett. (1)

F. Du, Y. Lu and S. Wu, �??Electrically tunable liquid-crystal photonic crystal fiber,�?? Appl. Phys. Lett. 85, 2181-2183 (2004)
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, �??Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,�?? IEEE Photonics Technol. Lett. 17, 819-821 (2005)
[CrossRef]

OFC 2002 (1)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, �??Tunable photonic band gap fiber,�?? in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466-468

Opt. Express (5)

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, �??Microstructured optical fiber devices, �?? Opt. Express 9, 698-713 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a>
[CrossRef] [PubMed]

C. Kerbage and B. J. Eggleton, �??Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,�?? Opt. Express 10, 246-255, (2002) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-246">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-246</a>
[PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, �??Optical devices based on liquid crystal photonic bandgap fibers,�?? Opt. Express 11, 2589-2596 (2003),<a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589 </a>
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran and C. M. de Sterke, �??Application of an ARROW model for designing tunable photonic devices,�?? Opt. Express 12, 1540-1550, (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1540%20%20">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1540%20%20 </a>
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. Wu, �??All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,�?? Opt. Express 12, 5857-5871 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5857">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5857</a>

Science (2)

P. St. J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003)
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998)
[CrossRef] [PubMed]

Other (1)

V. G. Chigrinov, Liquid Crystal Devices, (Artech-House, 1999)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Formation of a defect in a planar aligned nematic LC caused by the presence of a reverse tilt domain.

Fig. 2.
Fig. 2.

Cross section of a triangular PCF filled with LC and placed between two electrodes. The most important parameters of a LC filled PCF used in the following are illustrated as well: hole size (d), inter-hole distance (Λ), diameter of the fiber (L), relative dielectric permittivity of the LC (εLC) and relative dielectric permittivity of the material surrounding the fiber (εB).

Fig. 3.
Fig. 3.

Example of simulated E-field distribution normalized to V/L, field in the homogeneous structure. The PCF parameters are: d = 5 μm, A =10 μm, L = 125 μm, εLC = 10.6, εB = 3.91.

Fig. 4.
Fig. 4.

Example of normalized average value of the electric field in the rings as a function of the relative dielectric permittivity of the background material. The inset shows how the rings are defined and labeled. The PCF parameters are the same of Fig. 3, but with εB varying.

Fig. 5.
Fig. 5.

Maximum deviation of the electric field in each ring of holes as function of the relative permittivity of the external material.

Fig. 6.
Fig. 6.

Polarized micrograph of a silica capillary infiltrated with the dual-frequency LC and schematic drawing of the LC alignment in the capillary.

Fig. 7.
Fig. 7.

Dielectric anisotropy ∆ε as a function of the frequency of the electric field applied to the LC. The dielectric constant was measured by measuring the capacitance of a both planar and homeotropic aligned cell and calculating the dielectric constant from the capacitance.

Fig. 8.
Fig. 8.

Depending on the sign of the dielectric permittivity, the induced polarization P gives a dielectric torque to the molecules, turning the director towards being parallel (a) or perpendicular (b) to the field direction.

Fig. 9.
Fig. 9.

Reorientation of the LC when a 1 kHz voltage (a) and a 50 kHz voltage (b) are applied to the LC MDA-00-3969.

Fig. 10.
Fig. 10.

Transmission spectrum of the LMA-15 filled with the dual-frequency LC and coupled with a white light source.

Fig. 11.
Fig. 11.

(a) Positive shift (towards longer wavelengths) of the bandgaps when a 1 kHz E-field is applied to the LCPCF. (b) Negative shift (towards shorter wavelengths) of the bandgaps at 50 kHz. (c) Functional dependence of the shift on voltage for 1 kHz (right part of the x-axis) and 50 kHz (left part of the x-axis).

Fig. 12.
Fig. 12.

Photodiode voltage when a 1 kHz sine wave with a 96 Vrms voltage and amplitude modulated by a 10 Hz square signal is applied to the electrodes.

Fig. 13.
Fig. 13.

Measured rise and decay time of the LCPCF as a function of the applied voltage.

Fig. 14.
Fig. 14.

Experimental setup for measuring the birefringence.

Fig. 15.
Fig. 15.

Phase shift on the Poincaré sphere when (a) 18 Vrms, (b) 35 Vrms, (c) 55 Vrms, (d) 82 Vrms are applied to the LCPCF device.

Fig. 16.
Fig. 16.

Plot of the relative change in birefringence as a function of the applied voltage

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 d m + 1 / 2 n 2 2 ( E ) n 1 2 where m = 1,2 , . .
Δ ϕ = 2 π ( Δ n Δ n ' ) L / λ

Metrics