Abstract

A low power laser beam is used to induce large and fast variations in the shape of a polymer film due to photoinduced contraction and expansion of the polymer film surface subject to the beam. The direction of the photoinduced bend or twist of the polymer can be reversed by changing the polarization of the beam. Thus the film orientation could be varied within ±70°. The phenomenon is a result of optically induced reorientation of azobenzene moieties in the polymer network.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Finkelmann, E. Nishikawa, G. Pereira, and M. Warner, �??New opto-mechanical effect in solids,�?? Phys. Rev. Lett., 87, 015501-1-4 (2001).
    [CrossRef]
  2. J. Cviklinski, A. Tajbakhsh, and E. Terentjev, �??UV isomerization in nematic elastomers as a route to photo-mechanical transducer,�?? Eur. Phys. J. E9, 427-434 (2002).
  3. P. Hogan, A. Tajbakhsh, and E. Terentjev, �??UV manipulation of order and macroscopic shape in nematic elastomers,�?? Phys. Rev. E 65, 041720-1-10 (2002).
    [CrossRef]
  4. Y. Yu, M. Nakano, and T. Ikeda, �??Directed bending of a polymeric film by light,�?? Nature 425, 145 (2003).
    [CrossRef] [PubMed]
  5. T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, �??Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,�?? Adv. Mater. 15, 201-205 (2003).
    [CrossRef]
  6. Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, �??Effect of cross-linking density on photoinduced bending behavior of oriented liquid-crystalline network films containing azobenzene,�?? Chem. Mater. 16, 1637-1643 (2004).
    [CrossRef]
  7. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, �??Fast liquid-crystal elastomer swims into the dark,�?? Nature 3, 307-310 (2004).
    [CrossRef]
  8. A. Makushenko, O. Stolbova, and B. Neporent, �??Reversible orientational photodichroism and photoisomerization of aromatic azo-compounds,�?? Opt. Spectr. 31, 295- 302 (1971).
  9. M. Eich, J. Wendroff, B. Reck, H. Ringsdorf, and H. Schmidt, �??Nonlinear optical self-diffraction in a mesogenic side chain polymer,�?? Macromol. Chem. 186, 2639-2647 (1985).
    [CrossRef]
  10. U. Wiesner, N. Reynolds, C. Boeffel, and H. W. Spiess, �??An infrared spectroscopic study of photoinduced reorientation in dye containing liquid-crystalline polymers,�?? Liq. Cryst. 11, 251-267 (1992).
    [CrossRef]
  11. N. Holme, L. Nikolova, T. Norris, S. Hvilsted, M. Pederson, R. Berg, P. Rasmussen, and P. Ramanujam, �??Physical processes in azobenzene polymers on irradiation with polarized light,�?? Macromol. Symp. 137, 83-103 (1999).
    [CrossRef]
  12. O. Yaroshchuk, Yu. Zakrevskyy, A. Kiselev, J. Stumpe, and J. Lindau, �??Spatial reorientation of azobenzene side groups of a liquid crystalline polymer induced with linearly polarized light,�?? Eur. Phys. J. E6, 57-67 (2001).
  13. C. Kempe, M. Rutloh, and J. Stumpe, �??Photo-orientation of azobenzene side chain polymers parallel or perpendicular to the polarization of red He-Ne light,�?? J. Phys.: Condens. Matter. 15, S813-S823 (2003).
    [CrossRef]
  14. O. Tsutsumi, Y. Demachi, A. Kanazawa, T. Shiono, T. Ikeda, and Yu. Nagase, �??Photochemical phasetransition behavior of polymer liquid crystals induced by photochemical reaction of azobenzenes with strong donor-acceptor pairs,�?? J. Phys. Chem. B 102, 2869-2874 (1998).
    [CrossRef]
  15. H.-K. Lee, K. Doi, A. Kanazawa, T. Sciono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, �??Lightscattering-mode optical switching and image storage in polymer/liquid crystal composite films by means of photochemical phase transition,�?? Polymer 41, 1757-1763 (1999).
    [CrossRef]
  16. N. Tabiryan, U. Hrozhyk, and S. Serak, �??Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,�?? Phys. Rev. Lett. 93, 113901-1-4 (2004).
    [CrossRef]
  17. N. Tabiryan, S. Serak, and V. Grozhik, �??Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals,�?? J. Opt. Soc. Am. B 20, 538-544 (2003).

Adv. Mater.

T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, �??Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure,�?? Adv. Mater. 15, 201-205 (2003).
[CrossRef]

Chem. Mater.

Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, �??Effect of cross-linking density on photoinduced bending behavior of oriented liquid-crystalline network films containing azobenzene,�?? Chem. Mater. 16, 1637-1643 (2004).
[CrossRef]

Eur. Phys. J.

J. Cviklinski, A. Tajbakhsh, and E. Terentjev, �??UV isomerization in nematic elastomers as a route to photo-mechanical transducer,�?? Eur. Phys. J. E9, 427-434 (2002).

O. Yaroshchuk, Yu. Zakrevskyy, A. Kiselev, J. Stumpe, and J. Lindau, �??Spatial reorientation of azobenzene side groups of a liquid crystalline polymer induced with linearly polarized light,�?? Eur. Phys. J. E6, 57-67 (2001).

J. Opt. Soc. Am. B

J. Phys. Chem. B

O. Tsutsumi, Y. Demachi, A. Kanazawa, T. Shiono, T. Ikeda, and Yu. Nagase, �??Photochemical phasetransition behavior of polymer liquid crystals induced by photochemical reaction of azobenzenes with strong donor-acceptor pairs,�?? J. Phys. Chem. B 102, 2869-2874 (1998).
[CrossRef]

J. Phys.: Condens. Matter.

C. Kempe, M. Rutloh, and J. Stumpe, �??Photo-orientation of azobenzene side chain polymers parallel or perpendicular to the polarization of red He-Ne light,�?? J. Phys.: Condens. Matter. 15, S813-S823 (2003).
[CrossRef]

Liq. Cryst.

U. Wiesner, N. Reynolds, C. Boeffel, and H. W. Spiess, �??An infrared spectroscopic study of photoinduced reorientation in dye containing liquid-crystalline polymers,�?? Liq. Cryst. 11, 251-267 (1992).
[CrossRef]

Macromol. Chem.

M. Eich, J. Wendroff, B. Reck, H. Ringsdorf, and H. Schmidt, �??Nonlinear optical self-diffraction in a mesogenic side chain polymer,�?? Macromol. Chem. 186, 2639-2647 (1985).
[CrossRef]

Macromol. Symp.

N. Holme, L. Nikolova, T. Norris, S. Hvilsted, M. Pederson, R. Berg, P. Rasmussen, and P. Ramanujam, �??Physical processes in azobenzene polymers on irradiation with polarized light,�?? Macromol. Symp. 137, 83-103 (1999).
[CrossRef]

Nature

Y. Yu, M. Nakano, and T. Ikeda, �??Directed bending of a polymeric film by light,�?? Nature 425, 145 (2003).
[CrossRef] [PubMed]

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, �??Fast liquid-crystal elastomer swims into the dark,�?? Nature 3, 307-310 (2004).
[CrossRef]

Opt. Spectr.

A. Makushenko, O. Stolbova, and B. Neporent, �??Reversible orientational photodichroism and photoisomerization of aromatic azo-compounds,�?? Opt. Spectr. 31, 295- 302 (1971).

Phys. Rev. E

P. Hogan, A. Tajbakhsh, and E. Terentjev, �??UV manipulation of order and macroscopic shape in nematic elastomers,�?? Phys. Rev. E 65, 041720-1-10 (2002).
[CrossRef]

Phys. Rev. Lett.

H. Finkelmann, E. Nishikawa, G. Pereira, and M. Warner, �??New opto-mechanical effect in solids,�?? Phys. Rev. Lett., 87, 015501-1-4 (2001).
[CrossRef]

N. Tabiryan, U. Hrozhyk, and S. Serak, �??Nonlinear refraction in photoinduced isotropic state of liquid crystalline azobenzenes,�?? Phys. Rev. Lett. 93, 113901-1-4 (2004).
[CrossRef]

Polymer

H.-K. Lee, K. Doi, A. Kanazawa, T. Sciono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, �??Lightscattering-mode optical switching and image storage in polymer/liquid crystal composite films by means of photochemical phase transition,�?? Polymer 41, 1757-1763 (1999).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (1417 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of experimental geometry and the effect of laser-induced LC alignment. The block arrow shows the direction of laser beam incidence. Reorientation of azo LC molecules orthogonal to the beam polarization results in expansion (a) or contraction (b) of the input surface of the film and its bending away or towards the laser beam, correspondingly.

Fig. 2.
Fig. 2.

Photos of optically induced polymer deformation obtained in the experiment. (a) The azo LC polymer film (1 mm × 7 mm × 20 μm) is vertically attached to a platform (side view); (b) the polymer is bent away from the laser for the beam polarized perpendicular to the film orientation; (c) and it is bent towards the laser if the polarization is along the film orientation; (d) the polymer film (2 mm × 12 mm × 20 μm) used for inducing twist deformations with a laser beam of tilted polarization; (e) counter-clockwise folding of the polymer film for -45° polarization; (f) clockwise folding of the film for 45° polarization The power density of the laser beam is 0.25 W/cm2. (Movie: 1.4 Mb)

Fig. 3.
Fig. 3.

Bend angle of a polymer film (3 mm × 7 mm × 20 μm) as a function of power density of the laser beam for polarization parallel and perpendicular to LC orientation imposed at curing.

Fig. 4.
Fig. 4.

Deformation dynamics of the polymer film (1 mm × 7 mm × 20 μm) at the power density of the laser beam equal to 0.25 W/cm2.

Fig. 5.
Fig. 5.

Transmission and response time (inset) of the polymer film vs power density of incident beam. The film of 2 mm × 12 mm × 20 μm sizes was used in these measurements. The laser beam was not focused. The ratio of the output power to input power was registered with a power meter.

Metrics