Abstract

We report for the first time an all-fiber laser system that generates tunable Watt-level femtosecond pulses at around 2 μm without an external pulse compressor. The system is based on amplification of a Raman shifted Er-doped fiber laser in a Tm-doped 25-μm-core fiber. We obtain 108-fs pulses at 1980 nm with an average power of 3.1 W and a pulse energy of 31 nJ. The peak power at the output of the amplifier is estimated as ~230 kW, which to the best of our knowledge is the highest peak power obtained from a femtosecond or a few-picosecond amplifier based on any doped fiber. The amplified output is frequency-doubled to produce 78-fs pulses at 990 nm with an average power of 1.5 W and a pulse energy of 15 nJ. We demonstrate broad wavelength tunability around 2 μm as well as around 1 μm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. E. Nelson, E. P. Ippen, and H. A. Haus, "Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser," Appl. Phys. Lett. 67, 19-21 (1995).
    [CrossRef]
  2. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, "190-fs passively mode-locked thulium fiber laser with a low threshold," Opt. Lett. 21, 881-883 (1996).
    [CrossRef] [PubMed]
  3. N. Nishizawa and T. Goto, "Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers," IEEE Photonics Technol. Lett. 11, 325-327 (1999).
    [CrossRef]
  4. M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, and L. Goldberg, "Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber," Opt. Lett. 24, 1428-1430 (1999).
    [CrossRef]
  5. N. Nishizawa and T. Goto, "Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers," IEEE J. Sel. Topics in Quantum Electron. 7, 518-524 (2001).
    [CrossRef]
  6. M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, "High-power 100-fs pulse generation by frequency doubling of an erbium ytterbium-fiber master oscillator power amplifier," Opt. Lett. 23, 1840-1842 (1998).
    [CrossRef]
  7. A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Topics in Quantum Electron. 7, 504-517 (2001).
    [CrossRef]
  8. J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H.-J. Fuchs, H. Zellmer, E.-B. Kley, and A. Tünnermann, "High-average-power femtosecond fiber chirped-pulse amplification system," Opt. Lett. 28, 1984-1986 (2003).
    [CrossRef] [PubMed]
  9. A. Malinowski, A. Piper, J. H. V. Price, K. Furusawa, Y. Jeong, J. Nilsson, and D. J. Richardson, "Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing > 25-W average power," Opt. Lett. 29, 2073-2075 (2004).
    [CrossRef] [PubMed]
  10. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313</a>.
    [CrossRef] [PubMed]
  11. A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 µm," Opt. Express 13, 1221-1227 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1221">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1221</a>.
    [CrossRef] [PubMed]
  12. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, "High-power picosecond fiber amplifier based on nonlinear spectral compression," Opt. Lett. 30, 714-716 (2005).
    [CrossRef] [PubMed]
  13. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, "High energy femtosecond Yb cubicon amplifier," Opt. Express 13, 4717 - 4722 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4717">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4717</a>.
    [CrossRef] [PubMed]
  14. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, "High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm," Opt. Lett. 27, 1989-1991 (2002).
    [CrossRef]
  15. A. F. El-Sherif and T. A. King, "High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 µm," Opt. Lett. 28, 22-24 (2003).
    [CrossRef] [PubMed]
  16. S. D. Jackson, "Power scaling method for 2-µm diode-cladding-pumped Tm3+-doped silica fiber lasers that uses Yb3+ codoping," Opt. Lett. 28, 2192-2194 (2003).
    [CrossRef] [PubMed]
  17. S. D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004).
    [CrossRef]
  18. M. Meleshkevich, A. Drozhzhin, N. Platonov, D. Gapontsev, and D. Starodubov, "", in Fiber Lasers II: Technology, Systems, and Applications, L. N. Durvasula, A. J. W. Brown, and L. J. Nilsson, eds., Proc. SPIE 5709, 117-124 (2005).
    [CrossRef]
  19. D. Y. Shen, J. I. Mackenzie, J. K. Sahu, W. A. Clarkson, and S. D. Jackson, "High-power and ultra-efficient operation of a Tm3+-doped silica fiber laser," Advanced Solid-State Photonics 2005, Vienna, Austria, paper MC6.
  20. . Barannikov, F. Shcherbina, V. Gapontsev, M. Meleshkevich, and N. Platonov, "Linear-polarization, cw generation of 60 W power in a single-mode, Tm fibre laser," Conference on Lasers and Electro-Optics 2005, Baltimore, MD, paper CTuK2.
  21. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, CA, 2001).
  22. I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," Conference on Lasers and Electro-Optics 2005, Baltimore, MD, paper CThG1.
  23. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
    [CrossRef]
  24. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, "Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping," J. Opt. Soc. Am. B 17, 304-318 (2000).
    [CrossRef]
  25. A. E. Willner, K.-M. Feng, S. Lee, J. Peng, and H. Sun, "Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings," IEEE J. Sel. Topics in Quantum Electron. 5, 1298-1311 (1999).
    [CrossRef]
  26. P. E. Powers, T. J. Kulp, and S. E. Bisson, "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design," Opt. Lett. 23, 159-161 (1998).
    [CrossRef]

Advanced Solid-State Photonics 2005 (1)

D. Y. Shen, J. I. Mackenzie, J. K. Sahu, W. A. Clarkson, and S. D. Jackson, "High-power and ultra-efficient operation of a Tm3+-doped silica fiber laser," Advanced Solid-State Photonics 2005, Vienna, Austria, paper MC6.

Appl. Phys. Lett. (1)

L. E. Nelson, E. P. Ippen, and H. A. Haus, "Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser," Appl. Phys. Lett. 67, 19-21 (1995).
[CrossRef]

CLEO 2005 (2)

. Barannikov, F. Shcherbina, V. Gapontsev, M. Meleshkevich, and N. Platonov, "Linear-polarization, cw generation of 60 W power in a single-mode, Tm fibre laser," Conference on Lasers and Electro-Optics 2005, Baltimore, MD, paper CTuK2.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," Conference on Lasers and Electro-Optics 2005, Baltimore, MD, paper CThG1.

IEEE J. Sel. Topics in Quantum Electron. (3)

A. E. Willner, K.-M. Feng, S. Lee, J. Peng, and H. Sun, "Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings," IEEE J. Sel. Topics in Quantum Electron. 5, 1298-1311 (1999).
[CrossRef]

N. Nishizawa and T. Goto, "Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers," IEEE J. Sel. Topics in Quantum Electron. 7, 518-524 (2001).
[CrossRef]

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Topics in Quantum Electron. 7, 504-517 (2001).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

N. Nishizawa and T. Goto, "Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers," IEEE Photonics Technol. Lett. 11, 325-327 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (11)

W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, "High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm," Opt. Lett. 27, 1989-1991 (2002).
[CrossRef]

A. F. El-Sherif and T. A. King, "High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 µm," Opt. Lett. 28, 22-24 (2003).
[CrossRef] [PubMed]

S. D. Jackson, "Power scaling method for 2-µm diode-cladding-pumped Tm3+-doped silica fiber lasers that uses Yb3+ codoping," Opt. Lett. 28, 2192-2194 (2003).
[CrossRef] [PubMed]

J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, "High-power picosecond fiber amplifier based on nonlinear spectral compression," Opt. Lett. 30, 714-716 (2005).
[CrossRef] [PubMed]

M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, and L. Goldberg, "Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber," Opt. Lett. 24, 1428-1430 (1999).
[CrossRef]

R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, "190-fs passively mode-locked thulium fiber laser with a low threshold," Opt. Lett. 21, 881-883 (1996).
[CrossRef] [PubMed]

J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H.-J. Fuchs, H. Zellmer, E.-B. Kley, and A. Tünnermann, "High-average-power femtosecond fiber chirped-pulse amplification system," Opt. Lett. 28, 1984-1986 (2003).
[CrossRef] [PubMed]

A. Malinowski, A. Piper, J. H. V. Price, K. Furusawa, Y. Jeong, J. Nilsson, and D. J. Richardson, "Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing > 25-W average power," Opt. Lett. 29, 2073-2075 (2004).
[CrossRef] [PubMed]

M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, "High-power 100-fs pulse generation by frequency doubling of an erbium ytterbium-fiber master oscillator power amplifier," Opt. Lett. 23, 1840-1842 (1998).
[CrossRef]

P. E. Powers, T. J. Kulp, and S. E. Bisson, "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design," Opt. Lett. 23, 159-161 (1998).
[CrossRef]

D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
[CrossRef]

Proc. SPIE (1)

M. Meleshkevich, A. Drozhzhin, N. Platonov, D. Gapontsev, and D. Starodubov, "", in Fiber Lasers II: Technology, Systems, and Applications, L. N. Durvasula, A. J. W. Brown, and L. J. Nilsson, eds., Proc. SPIE 5709, 117-124 (2005).
[CrossRef]

Other (1)

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, CA, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Effective length of a high-dispersion amplifier normalized on the effective length of a zero-dispersion amplifier is plotted as a function of the pulse compression ratio for two values of the amplifier gain, 15 dB (solid line) and 25 dB (dashed line).

Fig. 2.
Fig. 2.

Schematic of the experimental setup.

Fig. 3.
Fig. 3.

Tm fiber amplifier output power at 1980 nm versus coupled pump power at 790 nm. Experimental data (squares) are shown along with the linear fit that indicates 15% slope efficiency (line).

Fig. 4.
Fig. 4.

Autocorrelation traces for (a) amplified 31-nJ pulses at 1980 nm and (b) frequency-doubled 15-nJ pulses at 990 nm.

Fig. 5.
Fig. 5.

(a) Second harmonic power and (b) second harmonic efficiency versus fundamental power at 2 μm. The straight line represents small-signal normalized conversion efficiency of 3.2 %/nJ.

Fig. 6.
Fig. 6.

Wavelength tuning characteristics of the system, (a) average power and (b) pulse length for the fundamental (squares) and the second harmonic (circles) are shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B = γ P ( z ) d z = γ P 0 L eff ,
L eff = ( 1 exp ( gL ) ) g ,

Metrics