Abstract

All-optical wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in periodically poled LiNbO3 (PPLN) waveguides. The signal pulse with 40-GHz repetition rate and 1.57-ps pulse width is adopted. The converted idler wavelength can be tuned from 1527.4 to 1540.5nm as the signal wavelength is varied from 1561.9 to 1548.4nm. No obvious changes of the pulse shape and width, also no chirp are observed in the converted idler pulse. The results imply that single-to-multiple channel wavelength conversions can be achieved by appropriately tuning the two pump wavelengths.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. J. B. Yoo, �??Wavelength conversion technologies for WDM network applications,�?? J. Lightwave Technol. 14, 955�??966 (1996).
    [CrossRef]
  2. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, �??1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,�?? IEEE Photonics Technol. Lett. 11, 653�??655 (1999).
    [CrossRef]
  3. C. Q. Xu, H. Okayama, and M. Kawahara, 1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,�?? Appl. Phys. Lett. 63, 3559�??3561 (1993).
    [CrossRef]
  4. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, �??1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,�?? Opt. Lett. 23, 1004�??1006 (1998).
    [CrossRef]
  5. S. J. B. Yoo, C. Caneau, R. Bhat, and M. A. Koza, �??Transparent wavelength conversion by difference frequency generation in AlGaAs waveguides�??, OFC �??96, pp. 129-131, paper WG7 (1996).
  6. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and Neo Antoniades, �??Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,�?? Appl. Phys. Lett. 68, 2609-2611 (1996).
    [CrossRef]
  7. K. Gallo and G. Assanto, �??Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,�?? J. Opt Soc. Am. B 16, 741�??753 (1999).
    [CrossRef]
  8. S. Gao, C. Yang, and G. Jin, �??Flag broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,�?? IEEE Photonics Technol. Lett. 16, 557-559 (2004).
    [CrossRef]
  9. G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, �??Wavelength shifting and amplification of optical pulses through cascaded secondorder processed in periodically poled lithium niobate,�?? Appl. Phys. Lett. 7, 136�??138 (1998).
    [CrossRef]
  10. T. Suhara and H. Nishihara, �??Theoretical analysis of waveguide second harmonic generation phase matched with uniform and chirped gratings,�?? IEEE J. Quantum Electron. 26, 1265�??1276 (1990).
    [CrossRef]
  11. L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, �??Wavelength conversion and pulse reshaping througth cascaded interations in MZI configuration,�?? IEEE J. Quantum Electron. 39, 1486�??1491 (2003).
    [CrossRef]
  12. C. Liberale, I. Cristiani, L. Razzari, and V. Degiorgio, �??Numerical study of cascaded wavelength conversion in quadratic media,�?? J. Opt. A 4, 457�??462 (2002).
    [CrossRef]
  13. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, �??Quasiphase-matched optical parametric oscillators in bulk periodically poled LiNbO ,�?? J. Opt Soc. Am. B 12, 2102�??2106 (1995).
    [CrossRef]
  14. R. Ramponi, R. Osellame, M. Marangoni, G. P. Banfi, I. Cristiani, L. Tartara, and L. Palchetti, �??Cascading of second-order processes in a planar ti-indiffused LiNbO3 waveguide: Application to frequency shifting,�?? Opt. Commun. 172, 203�??209 (1999).
    [CrossRef]
  15. S. Kawanishi, M. H. Chou, K. Fujiura, M. M. Fejer, and T. Morioka, �??All-optical modulation time-divisionmultiplexing of 100 Gbit/s signal using quasi-phase matched mixing in LiNbO3 waveguides,�?? IEEE Electron. Lett. 36, 1568�??1569 (2000).
    [CrossRef]
  16. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, �??Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping,�?? Appl. Phys. B 73, 501�??504 (2001).
    [CrossRef]
  17. J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, �??Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,�?? IEEE Photonics Technol. Lett. 15, 1743�??1745 (2003).
    [CrossRef]
  18. J. Sun, X. Yuan, and D. Liu, �??Tunable wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides,�?? Appl. Phys. B 80, 681-685 (2005).
    [CrossRef]
  19. J. Sun, and W. Liu, �??Multiwavelength generation by utilizing second-order nonlinearity of LiNbO3 waveguides in fiber lasers,�?? Opt. Commun. 224, 125-130 (2003).
    [CrossRef]
  20. B. Chen, and C. Q. Xu, �??Analysis of novel cascaded ÷ (2) SFG+DFG wavelength conversions in quasi-phasematched waveguides,�?? IEEE J. Quantum. Electron. 40, 256-261 (2004).
    [CrossRef]
  21. S. Yu, and W. Gu, �??A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,�?? IEEE J. Quantum Electron. 41, 1007�??1012 (2005).
    [CrossRef]
  22. S. Yu, and W. Gu, �??Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded x(2) SFG+DFG interactions,�?? IEEE J. Quantum Electron. 40, 1548�??1554 (2004).
    [CrossRef]
  23. Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, �??Tunable all-optical wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide,�?? OFC �??03, Atlanta, GA/USA, March, pp. 767-768, paper FP4 (2003).
  24. J. Yamawaku, A. Takada, E. Yamazaki, O. Tadanaga, H. Miyazawa, and M. Asobe, �??Selective wavelength conversion using PPLN waveguide with two pump configuration,�?? in Conf. Lasers and Electro-Optics, Jun., 1-6, pp.1135-1136 (2003).
  25. Y. L. Lee, B.-A. Yu, C. Jung, Y.-C. Noh, J. Lee, and D.-K. Ko, �??All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,�?? Opt. Express 13, 2988-2993 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2988">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2988
    [CrossRef] [PubMed]
  26. Y. L. Lee, C. Jung, Y.-C. Noh, M. Y. Park, C. C. Byeon, D.-K. Ko, and J. Lee, �??Channel selective wavelength conversion and tuning in periodic poled Ti:PPLN channel waveguides,�?? Opt. Express 12, 2649- 2655 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2649">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2649</a>
    [CrossRef] [PubMed]
  27. Y. H. Min, W. Grundköter, J. H. Lee, Y. L. Lee, V. Quiring, and W. Sohler, �??Efficient, all-optical wavelength conversion and tuning of ps-pulses in a Ti:PPLN channel waveguide,�?? Proc. Conference Lasers and Electro - Optics (CLEO/Europe �??03), Munich/Germany, paper CE5-1-THU (2003).

(CLEO/Europe ???03) (1)

Y. H. Min, W. Grundköter, J. H. Lee, Y. L. Lee, V. Quiring, and W. Sohler, �??Efficient, all-optical wavelength conversion and tuning of ps-pulses in a Ti:PPLN channel waveguide,�?? Proc. Conference Lasers and Electro - Optics (CLEO/Europe �??03), Munich/Germany, paper CE5-1-THU (2003).

Appl. Phys. B (2)

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, and W. Sohler, �??Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO waveguides using pulsed and CW pumping,�?? Appl. Phys. B 73, 501�??504 (2001).
[CrossRef]

J. Sun, X. Yuan, and D. Liu, �??Tunable wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides,�?? Appl. Phys. B 80, 681-685 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and Neo Antoniades, �??Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,�?? Appl. Phys. Lett. 68, 2609-2611 (1996).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, �??Wavelength shifting and amplification of optical pulses through cascaded secondorder processed in periodically poled lithium niobate,�?? Appl. Phys. Lett. 7, 136�??138 (1998).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, 1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,�?? Appl. Phys. Lett. 63, 3559�??3561 (1993).
[CrossRef]

Conf. Lasers and Electro-Optics (2003). (1)

J. Yamawaku, A. Takada, E. Yamazaki, O. Tadanaga, H. Miyazawa, and M. Asobe, �??Selective wavelength conversion using PPLN waveguide with two pump configuration,�?? in Conf. Lasers and Electro-Optics, Jun., 1-6, pp.1135-1136 (2003).

IEEE Electron. Lett. (1)

S. Kawanishi, M. H. Chou, K. Fujiura, M. M. Fejer, and T. Morioka, �??All-optical modulation time-divisionmultiplexing of 100 Gbit/s signal using quasi-phase matched mixing in LiNbO3 waveguides,�?? IEEE Electron. Lett. 36, 1568�??1569 (2000).
[CrossRef]

IEEE J. Quantum Electron. (4)

T. Suhara and H. Nishihara, �??Theoretical analysis of waveguide second harmonic generation phase matched with uniform and chirped gratings,�?? IEEE J. Quantum Electron. 26, 1265�??1276 (1990).
[CrossRef]

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, �??Wavelength conversion and pulse reshaping througth cascaded interations in MZI configuration,�?? IEEE J. Quantum Electron. 39, 1486�??1491 (2003).
[CrossRef]

S. Yu, and W. Gu, �??A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,�?? IEEE J. Quantum Electron. 41, 1007�??1012 (2005).
[CrossRef]

S. Yu, and W. Gu, �??Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded x(2) SFG+DFG interactions,�?? IEEE J. Quantum Electron. 40, 1548�??1554 (2004).
[CrossRef]

IEEE J. Quantum. Electron. (1)

B. Chen, and C. Q. Xu, �??Analysis of novel cascaded ÷ (2) SFG+DFG wavelength conversions in quasi-phasematched waveguides,�?? IEEE J. Quantum. Electron. 40, 256-261 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, �??Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,�?? IEEE Photonics Technol. Lett. 15, 1743�??1745 (2003).
[CrossRef]

S. Gao, C. Yang, and G. Jin, �??Flag broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,�?? IEEE Photonics Technol. Lett. 16, 557-559 (2004).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, �??1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,�?? IEEE Photonics Technol. Lett. 11, 653�??655 (1999).
[CrossRef]

J. Lightwave Technol. (1)

S. J. B. Yoo, �??Wavelength conversion technologies for WDM network applications,�?? J. Lightwave Technol. 14, 955�??966 (1996).
[CrossRef]

J. Opt Soc. Am. B (2)

K. Gallo and G. Assanto, �??Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,�?? J. Opt Soc. Am. B 16, 741�??753 (1999).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, �??Quasiphase-matched optical parametric oscillators in bulk periodically poled LiNbO ,�?? J. Opt Soc. Am. B 12, 2102�??2106 (1995).
[CrossRef]

J. Opt. A (1)

C. Liberale, I. Cristiani, L. Razzari, and V. Degiorgio, �??Numerical study of cascaded wavelength conversion in quadratic media,�?? J. Opt. A 4, 457�??462 (2002).
[CrossRef]

OFC ???03 (1)

Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, �??Tunable all-optical wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide,�?? OFC �??03, Atlanta, GA/USA, March, pp. 767-768, paper FP4 (2003).

OFC ???96 (1)

S. J. B. Yoo, C. Caneau, R. Bhat, and M. A. Koza, �??Transparent wavelength conversion by difference frequency generation in AlGaAs waveguides�??, OFC �??96, pp. 129-131, paper WG7 (1996).

Opt. Commun. (2)

R. Ramponi, R. Osellame, M. Marangoni, G. P. Banfi, I. Cristiani, L. Tartara, and L. Palchetti, �??Cascading of second-order processes in a planar ti-indiffused LiNbO3 waveguide: Application to frequency shifting,�?? Opt. Commun. 172, 203�??209 (1999).
[CrossRef]

J. Sun, and W. Liu, �??Multiwavelength generation by utilizing second-order nonlinearity of LiNbO3 waveguides in fiber lasers,�?? Opt. Commun. 224, 125-130 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental setup for SFG+DFG based wavelength conversion between ps-pulses; PC: polarization controller, ATT: attenuator, TF: tunable filter, OSA: optical spectrum analyzer, CSA: communication signal analyzer.

Fig. 2.
Fig. 2.

Measured output spectrum from the SFG+DFG based wavelength converter. Two pump wavelengths are 1540.9 and 1549.1nm respectively and the signal wavelength is tuned at 1555.9nm.

Fig. 3.
Fig. 3.

Measured output spectra from the SFG+DFG based wavelength converter for the different signal wavelengths: (a) 1555.3nm, (b) 1561.9nm. Two pump wavelengths are kept at 1540.9 and 1549.1nm respectively during the experiments.

Fig. 4.
Fig. 4.

Conversion efficiency vs. initial signal wavelength. Two pump wavelengths are kept at 1540.9 and 1549.1nm respectively and the pump powers are both about 10dBm during the experiments.

Fig. 5.
Fig. 5.

Measured output spectra from the SFG+DFG based wavelength converter with two pump wavelength difference |λ P1 -λ P2| changed: (a) 17.3nm, (b) 2.3nm. Signal wavelength is kept at 1561.9nm and the idler wavelength is at about 1528.5nm during the experiments.

Fig. 6.
Fig. 6.

Conversion efficiency vs. the difference of the two pump wavelengths. Signal wavelength is kept at 1561.9nm and the idler wavelength is at about 1528.5nm during the experiments. The two pump powers are chosen both at about 10dBm.

Fig. 7.
Fig. 7.

Conversion efficiency vs. wavelength detuning of pump1 when pump2 is fixed at 1549.1nm. Signal wavelength is kept at 1556.6nm and the idler wavelength is varied as pump1 wavelength is tuned. The two pump powers are chosen both at about 10dBm. (λ P10 = 1540.9nm).

Fig. 8.
Fig. 8.

Measured output spectrum from the SFG+DFG based wavelength converter with pump2 fixed at 1549.1nm and pump1 tuned at 1545.0nm. Signal wavelength is kept at 1556.6nm.

Fig. 9.
Fig. 9.

Variations of the measured pulse duration (unclosed circles) and spectrum bandwidth of the converted idler pulses (unclosed squares).

Fig. 10.
Fig. 10.

Variations of the duration-bandwidth product of the converted idler pulses. The dashed line represents the transform limited case for hyperbolic-secant pulse as a reference.

Metrics