Abstract

Second harmonic generation in an air-silica microstructured optical fiber pumped by subnanosecond pulses is used in order to initiate modulation instability processes in normal and anomalous dispersion regimes. This allows us to generate an ultra wide and flat supercontinuum (350–1750 nm), covering the entire transparency window of silica and exhibiting a singlemode transverse profile in visible range.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Raman cascade suppression by using wide band parametric conversion in large normal dispersion regime

Vincent Couderc, Philippe Leproux, Vincent Tombelaine, Ludovic Grossard, and A. Barthélémy
Opt. Express 13(21) 8584-8590 (2005)

White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system

Pierre-Alain Champert, Vincent Couderc, Philippe Leproux, Sébastien Février, Vincent Tombelaine, Laurent Labonté, Philippe Roy, Claude Froehly, and Philippe Nérin
Opt. Express 12(19) 4366-4371 (2004)

Supercontinuum generation in a nonlinear Yb-doped, double-clad, microstructured fiber

Aude Roy, Philippe Leproux, Philippe Roy, Jean-Louis Auguste, and Vincent Couderc
J. Opt. Soc. Am. B 24(4) 788-791 (2007)

References

  • View by:
  • |
  • |
  • |

  1. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
    [Crossref]
  2. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28, 1820–1822 (2003).
    [Crossref] [PubMed]
  3. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299.
    [Crossref] [PubMed]
  4. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864.
    [Crossref] [PubMed]
  5. P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4366.
    [Crossref] [PubMed]
  6. V. Tombelaine, V. Couderc, P. Leproux, L. Grossard, J. L. Auguste, and J. M. Blondy, “Modulational instabilities in normal dispersion regime leading to white-light supercontinuum generation,” CLEO/QELS, Baltimore, Maryland, USA, paper CTuJ2 (2005).
  7. B. T. Kuhlmey, R. C. Mc Phedran, and C. M. de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27, 1684–1686 (2002).
    [Crossref]
  8. Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett. 39, 466–468 (1981).
    [Crossref]
  9. U. Osterberg and W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett. 11, 516–518 (1986).
    [Crossref] [PubMed]
  10. R. H. Stolen and H. W. K. Tom, “Self-organised phase-matched harmonic generation in optical fibers,” Opt. Lett. 12, 585–587 (1987).
    [Crossref] [PubMed]
  11. M. A. Saifi and M. J. Andrejco, “Second-harmonic generation in single-mode and multimode fibers,” Opt. Lett. 13, 773–775 (1988).
    [Crossref] [PubMed]
  12. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1071 (1982).
    [Crossref]
  13. U. Osterberg, R. I. Lawconnell, L. A. Brambani, C. G. Askins, and E. J. Friebele, “Modal evolution of induced second harmonic light in an optical fiber,” Opt. Lett. 16, 132–134 (1991).
    [Crossref] [PubMed]
  14. K. M. Hilligsøe, T. Vestergaard Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Per Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045.
    [Crossref] [PubMed]
  15. M. H. Frosz, O. Bang, A. Bjarklev, P.E. Andersen, and J. Broeng, “Supercontinuum generation in photonic crystal fibers: The role of the second zero dispersion wavelength,” CLEO/QELS, Baltimore, Maryland, USA, paper CWC1 (2005).

2004 (4)

2003 (1)

2002 (1)

2001 (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

1991 (1)

1988 (1)

1987 (1)

1986 (1)

1982 (1)

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1071 (1982).
[Crossref]

1981 (1)

Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett. 39, 466–468 (1981).
[Crossref]

Andersen, P.E.

M. H. Frosz, O. Bang, A. Bjarklev, P.E. Andersen, and J. Broeng, “Supercontinuum generation in photonic crystal fibers: The role of the second zero dispersion wavelength,” CLEO/QELS, Baltimore, Maryland, USA, paper CWC1 (2005).

Andrejco, M. J.

Askins, C. G.

Auguste, J. L.

V. Tombelaine, V. Couderc, P. Leproux, L. Grossard, J. L. Auguste, and J. M. Blondy, “Modulational instabilities in normal dispersion regime leading to white-light supercontinuum generation,” CLEO/QELS, Baltimore, Maryland, USA, paper CTuJ2 (2005).

Bang, O.

M. H. Frosz, O. Bang, A. Bjarklev, P.E. Andersen, and J. Broeng, “Supercontinuum generation in photonic crystal fibers: The role of the second zero dispersion wavelength,” CLEO/QELS, Baltimore, Maryland, USA, paper CWC1 (2005).

Biancalana, F.

Birks, T. A.

Bjarklev, A.

M. H. Frosz, O. Bang, A. Bjarklev, P.E. Andersen, and J. Broeng, “Supercontinuum generation in photonic crystal fibers: The role of the second zero dispersion wavelength,” CLEO/QELS, Baltimore, Maryland, USA, paper CWC1 (2005).

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1071 (1982).
[Crossref]

Blondy, J. M.

V. Tombelaine, V. Couderc, P. Leproux, L. Grossard, J. L. Auguste, and J. M. Blondy, “Modulational instabilities in normal dispersion regime leading to white-light supercontinuum generation,” CLEO/QELS, Baltimore, Maryland, USA, paper CTuJ2 (2005).

Brambani, L. A.

Broeng, J.

M. H. Frosz, O. Bang, A. Bjarklev, P.E. Andersen, and J. Broeng, “Supercontinuum generation in photonic crystal fibers: The role of the second zero dispersion wavelength,” CLEO/QELS, Baltimore, Maryland, USA, paper CWC1 (2005).

Champert, P. A.

Couderc, V.

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4366.
[Crossref] [PubMed]

V. Tombelaine, V. Couderc, P. Leproux, L. Grossard, J. L. Auguste, and J. M. Blondy, “Modulational instabilities in normal dispersion regime leading to white-light supercontinuum generation,” CLEO/QELS, Baltimore, Maryland, USA, paper CTuJ2 (2005).

de Sterke, C. M.

Dudley, J. M.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

Eggleton, B. J.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

Février, S.

Friebele, E. J.

Froehly, C.

Frosz, M. H.

M. H. Frosz, O. Bang, A. Bjarklev, P.E. Andersen, and J. Broeng, “Supercontinuum generation in photonic crystal fibers: The role of the second zero dispersion wavelength,” CLEO/QELS, Baltimore, Maryland, USA, paper CWC1 (2005).

Grossard, L.

V. Tombelaine, V. Couderc, P. Leproux, L. Grossard, J. L. Auguste, and J. M. Blondy, “Modulational instabilities in normal dispersion regime leading to white-light supercontinuum generation,” CLEO/QELS, Baltimore, Maryland, USA, paper CTuJ2 (2005).

Grossard, N.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

Hilligsøe, K. M.

Joly, N.

Keiding, S.

Knight, J. C.

Kristiansen, R.

Kuhlmey, B. T.

Labonté, L.

Larsen, J. J.

Lawconnell, R. I.

Leon-Saval, S. G.

Leproux, P.

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4366.
[Crossref] [PubMed]

V. Tombelaine, V. Couderc, P. Leproux, L. Grossard, J. L. Auguste, and J. M. Blondy, “Modulational instabilities in normal dispersion regime leading to white-light supercontinuum generation,” CLEO/QELS, Baltimore, Maryland, USA, paper CTuJ2 (2005).

Maillotte, H.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28, 1820–1822 (2003).
[Crossref] [PubMed]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

Margulis, W.

Mason, M. W.

Mølmer, K.

Mussot, A.

Nérin, P.

Nielsen, C. K.

Ohmori, Y.

Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett. 39, 466–468 (1981).
[Crossref]

Osterberg, U.

Paulsen, H. N.

Per Hansen, K.

Phedran, R. C. Mc

Provino, L.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28, 1820–1822 (2003).
[Crossref] [PubMed]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

Roy, P.

Russell, P. St. J.

Saifi, M. A.

Sasaki, Y.

Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett. 39, 466–468 (1981).
[Crossref]

Stolen, R. H.

R. H. Stolen and H. W. K. Tom, “Self-organised phase-matched harmonic generation in optical fibers,” Opt. Lett. 12, 585–587 (1987).
[Crossref] [PubMed]

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1071 (1982).
[Crossref]

Sylvestre, T.

Tom, H. W. K.

Tombelaine, V.

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4366.
[Crossref] [PubMed]

V. Tombelaine, V. Couderc, P. Leproux, L. Grossard, J. L. Auguste, and J. M. Blondy, “Modulational instabilities in normal dispersion regime leading to white-light supercontinuum generation,” CLEO/QELS, Baltimore, Maryland, USA, paper CTuJ2 (2005).

Vestergaard Andersen, T.

Wadsworth, W. J.

Windeler, R. S.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

Appl. Phys. Lett. (1)

Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett. 39, 466–468 (1981).
[Crossref]

Electron. Lett. (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett. 37, 558–560 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1071 (1982).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Other (2)

M. H. Frosz, O. Bang, A. Bjarklev, P.E. Andersen, and J. Broeng, “Supercontinuum generation in photonic crystal fibers: The role of the second zero dispersion wavelength,” CLEO/QELS, Baltimore, Maryland, USA, paper CWC1 (2005).

V. Tombelaine, V. Couderc, P. Leproux, L. Grossard, J. L. Auguste, and J. M. Blondy, “Modulational instabilities in normal dispersion regime leading to white-light supercontinuum generation,” CLEO/QELS, Baltimore, Maryland, USA, paper CTuJ2 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental set-up.

Fig. 2.
Fig. 2.

Calculated chromatic dispersion curves of fundamental and second order modes of the microstructured fiber. Inset: cross sectional scanning electron microscope image of the fiber.

Fig. 3.
Fig. 3.

Spectrum measured at the output end of the microstructured fiber (2 m), showing second harmonic generation at 532 nm from the fundamental wavelength at 1064 nm (RPP = Remaining Pump Power of the microchip laser @ 800 nm). The peak pump power at 1064 nm is 100 W.

Fig. 4.
Fig. 4.

Spectral broadening measured in visible and infrared ranges (peak pump power at 1064 nm: 6 kW). Inset: fiber output diffracted beam and far field transverse distribution (LP11 mode).

Metrics