Abstract

Second harmonic generation in an air-silica microstructured optical fiber pumped by subnanosecond pulses is used in order to initiate modulation instability processes in normal and anomalous dispersion regimes. This allows us to generate an ultra wide and flat supercontinuum (350–1750 nm), covering the entire transparency window of silica and exhibiting a singlemode transverse profile in visible range.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, �??Compact broadband continuum source based on microchip laser pumped microstructured fibre,�?? Electron. Lett. 37, 558-560 (2001).
    [CrossRef]
  2. A. Mussot, T. Sylvestre, L. Provino and H. Maillotte, �??Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,�?? Opt. Lett. 28, 1820-1822 (2003).
    [CrossRef] [PubMed]
  3. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana and P. St. J. Russell, �??Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,�?? Opt. Express 12, 299-309 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>.
    [CrossRef] [PubMed]
  4. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell and M. W. Mason, �??Supercontinuum generation in submicron fibre waveguides,�?? Opt. Express 12, 2864-2869 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864</a>.
    [CrossRef] [PubMed]
  5. P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly and P. Nérin, �??White-light supercontinuum generation in normally dispersive optical fiber using original multiwavelength pumping system,�?? Opt. Express 12, 4366-4371 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4366">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4366</a>.
    [CrossRef] [PubMed]
  6. V. Tombelaine, V. Couderc, P. Leproux, L. Grossard, J. L. Auguste and J. M. Blondy, �??Modulational instabilities in normal dispersion regime leading to white-light supercontinuum generation,�?? CLEO/QELS, Baltimore, Maryland, USA, paper CTuJ2 (2005).
  7. B. T. Kuhlmey, R. C. Mc Phedran and C. M. de Sterke, �??Modal cutoff in microstructured optical fibers,�?? Opt. Lett. 27, 1684-1686 (2002).
    [CrossRef]
  8. Y. Sasaki and Y. Ohmori, �??Phase-matched sum-frequency light generation in optical fibers,�?? Appl. Phys. Lett. 39, 466-468 (1981).
    [CrossRef]
  9. U. Osterberg and W. Margulis, �??Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,�?? Opt. Lett. 11, 516-518 (1986).
    [CrossRef] [PubMed]
  10. R. H. Stolen and H. W. K. Tom, �??Self-organised phase-matched harmonic generation in optical fibers,�?? Opt. Lett. 12, 585-587 (1987).
    [CrossRef] [PubMed]
  11. M. A. Saifi and M. J. Andrejco, �??Second-harmonic generation in single-mode and multimode fibers,�?? Opt. Lett. 13, 773-775 (1988).
    [CrossRef] [PubMed]
  12. R. H. Stolen and J. E. Bjorkholm, �??Parametric amplification and frequency conversion in optical fibers,�?? IEEE J. Quantum Electron. QE-18, 1062-1071 (1982).
    [CrossRef]
  13. U. Osterberg, R. I. Lawconnell, L. A. Brambani, C. G. Askins and E. J. Friebele, �??Modal evolution of induced second harmonic light in an optical fiber,�?? Opt. Lett. 16, 132-134 (1991).
    [CrossRef] [PubMed]
  14. K. M. Hilligsøe, T. Vestergaard Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Per Hansen and J. J. Larsen, �??Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,�?? Opt. Express 12, 1045-1054 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045</a>.
    [CrossRef] [PubMed]
  15. M. H. Frosz, O. Bang, A. Bjarklev, P.E. Andersen and J. Broeng, �??Supercontinuum generation in photonic crystal fibers: The role of the second zero dispersion wavelength,�?? CLEO/QELS, Baltimore, Maryland, USA, paper CWC1 (2005).

Appl. Phys. (1)

Y. Sasaki and Y. Ohmori, �??Phase-matched sum-frequency light generation in optical fibers,�?? Appl. Phys. Lett. 39, 466-468 (1981).
[CrossRef]

CLEO/QELS (2)

V. Tombelaine, V. Couderc, P. Leproux, L. Grossard, J. L. Auguste and J. M. Blondy, �??Modulational instabilities in normal dispersion regime leading to white-light supercontinuum generation,�?? CLEO/QELS, Baltimore, Maryland, USA, paper CTuJ2 (2005).

M. H. Frosz, O. Bang, A. Bjarklev, P.E. Andersen and J. Broeng, �??Supercontinuum generation in photonic crystal fibers: The role of the second zero dispersion wavelength,�?? CLEO/QELS, Baltimore, Maryland, USA, paper CWC1 (2005).

Electron. Lett. (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, �??Compact broadband continuum source based on microchip laser pumped microstructured fibre,�?? Electron. Lett. 37, 558-560 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen and J. E. Bjorkholm, �??Parametric amplification and frequency conversion in optical fibers,�?? IEEE J. Quantum Electron. QE-18, 1062-1071 (1982).
[CrossRef]

Opt. Express (4)

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana and P. St. J. Russell, �??Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,�?? Opt. Express 12, 299-309 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>.
[CrossRef] [PubMed]

K. M. Hilligsøe, T. Vestergaard Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Per Hansen and J. J. Larsen, �??Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,�?? Opt. Express 12, 1045-1054 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045</a>.
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell and M. W. Mason, �??Supercontinuum generation in submicron fibre waveguides,�?? Opt. Express 12, 2864-2869 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864</a>.
[CrossRef] [PubMed]

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly and P. Nérin, �??White-light supercontinuum generation in normally dispersive optical fiber using original multiwavelength pumping system,�?? Opt. Express 12, 4366-4371 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4366">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4366</a>.
[CrossRef] [PubMed]

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental set-up.

Fig. 2.
Fig. 2.

Calculated chromatic dispersion curves of fundamental and second order modes of the microstructured fiber. Inset: cross sectional scanning electron microscope image of the fiber.

Fig. 3.
Fig. 3.

Spectrum measured at the output end of the microstructured fiber (2 m), showing second harmonic generation at 532 nm from the fundamental wavelength at 1064 nm (RPP = Remaining Pump Power of the microchip laser @ 800 nm). The peak pump power at 1064 nm is 100 W.

Fig. 4.
Fig. 4.

Spectral broadening measured in visible and infrared ranges (peak pump power at 1064 nm: 6 kW). Inset: fiber output diffracted beam and far field transverse distribution (LP11 mode).

Metrics