Abstract

We generate double-charge white-light optical vortices by sending a circularly polarized partially incoherent light through an uniaxial crystal. We show that the generated polichromatic vortices are structurally stable, and their correlation properties can be altered by the beam focusing, resulting in changes of the vortex core visibility.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London A 336, 165–190 (1974).
    [Crossref]
  2. G. A. Swartzlander, “Optical vortex filaments,” in Optical Vortices, eds.M. Vasnetsov and K. Staliunas, Vol. 228 of Horizons in World Physics (Nova Science, Huntington, N.Y., 1999).
  3. See, e.g., a comprehensive review paper,M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, Vol. 42, Ed. E. Wolf, (Elsevier, Amstredam, 2001).
  4. See an extensive list of references on optical vortices inG. A. Swartzlander, Singular Optics/Optical Vortex References, http://www.u.arizona.edu/”grovers/SO/so.html.
  5. A. S. Desyatnikov, Yu. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” in Progress in Optics, Vol. 47, Ed.E. Wolf, (Elsevier, Amstredam, 2005).
    [Crossref]
  6. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge U. Press, Cambridge, 1999).
  7. G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behaviour of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901(4) (2002).
    [Crossref] [PubMed]
  8. M. Berry, “Coloured phase singularities,” New J. Phys. 4, 66.1–66.14 (2002).
    [Crossref]
  9. M. Berry, “Exploring the colours of dark light,” New J. Phys. 4, 74.1–74.14 (2002).
    [Crossref]
  10. J. Leach and M. J. Padgett, “Observation of chromatic effects near a while-light vortex,” New J. Phys. 5, 154.1–154.7 (2003).
    [Crossref]
  11. A. V. Volyar, Yu. A. Egorov, A. F. Rubass, and T. A. Fadeeva, “Fine structure of white optical vortices in crystals,” Tech. Phys. Lett. 30, 701–704 (2004).
    [Crossref]
  12. M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 196 (2004).
    [Crossref]
  13. O. V. Angelsky, S. G. Hanson, A. P. Maksimyak, and P. P. Maksimyak, “On the feasibility for determining the amplitude zeroes in polychromatic fields,” Opt. Express 13, 4396–4405 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4396.
    [Crossref] [PubMed]
  14. S. A. Ponomarenko, “A class of partially coherent vortex beams carrying optical vortices,” J. Opt. Soc. Am. A 18, 150–156 (2001).
    [Crossref]
  15. G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).
    [Crossref]
  16. G. V. Bogatyryova, C. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–890 (2003).
    [Crossref] [PubMed]
  17. H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003).
    [Crossref] [PubMed]
  18. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).
    [Crossref] [PubMed]
  19. I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. B 21, 1895–1900 (2004).
    [Crossref]
  20. K. Motzek, Yu. S. Kivshar, M.-F. Shih, and G. A. Swartzlander, “Spatial coherence singularities and incoherent vortex solitons,” J. Opt. Soc. Am. B 22, 1437–1442 (2005).
    [Crossref]
  21. A. V. Volyar and T. A. Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
    [Crossref]
  22. A. V. Volyar and T. A. Fadeeva, “Decay and fusion of polarization umbilics in a singular beam passed though a crystal,” Opt. Spectrosc. 95, 792–799 (2003).
    [Crossref]
  23. See also a review paper A. V. Volyar, “Singular beams in unixial crystals,” Ukr. J. Phys. 4, 400–408 (2004).
  24. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, and H. Walther, “Vortices in femtosecond laser fields,” Opt. Lett. 29, 1942 (2004).
    [Crossref] [PubMed]
  25. G. A. Swartzlander and J. Schmit, “Temporal Correlation Vortices and Topological Dispersion,” Phys. Rev. Lett. 93, 093901(4) (2004).
    [Crossref] [PubMed]
  26. S. A. Ponomarenko and E. Wolf, “Spectral anomalies in a Fraunhofer diffraction pattern,” Opt. Lett. 27, 1211–1213 (2002).
    [Crossref]
  27. G. Popescu and A. Dogariu, “Spectral Anomalies at Wave-Front Dislocations,” Phys. Rev. Lett. 88, 183902(4) (2002).
    [Crossref] [PubMed]
  28. G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” J. Opt. A 6, S239–S242 (2004).
    [Crossref]
  29. D. G. Fischer and T. D. Visser, “Spatial correlation properties of focused partially coherent fields,” J. Opt. Soc. Am. A 21, 2097–2102 (2004).
    [Crossref]

2005 (2)

2004 (9)

A. V. Volyar, Yu. A. Egorov, A. F. Rubass, and T. A. Fadeeva, “Fine structure of white optical vortices in crystals,” Tech. Phys. Lett. 30, 701–704 (2004).
[Crossref]

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 196 (2004).
[Crossref]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).
[Crossref] [PubMed]

See also a review paper A. V. Volyar, “Singular beams in unixial crystals,” Ukr. J. Phys. 4, 400–408 (2004).

G. A. Swartzlander and J. Schmit, “Temporal Correlation Vortices and Topological Dispersion,” Phys. Rev. Lett. 93, 093901(4) (2004).
[Crossref] [PubMed]

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” J. Opt. A 6, S239–S242 (2004).
[Crossref]

K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, and H. Walther, “Vortices in femtosecond laser fields,” Opt. Lett. 29, 1942 (2004).
[Crossref] [PubMed]

D. G. Fischer and T. D. Visser, “Spatial correlation properties of focused partially coherent fields,” J. Opt. Soc. Am. A 21, 2097–2102 (2004).
[Crossref]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. B 21, 1895–1900 (2004).
[Crossref]

2003 (6)

G. V. Bogatyryova, C. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–890 (2003).
[Crossref] [PubMed]

H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003).
[Crossref] [PubMed]

A. V. Volyar and T. A. Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
[Crossref]

A. V. Volyar and T. A. Fadeeva, “Decay and fusion of polarization umbilics in a singular beam passed though a crystal,” Opt. Spectrosc. 95, 792–799 (2003).
[Crossref]

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).
[Crossref]

J. Leach and M. J. Padgett, “Observation of chromatic effects near a while-light vortex,” New J. Phys. 5, 154.1–154.7 (2003).
[Crossref]

2002 (5)

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behaviour of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901(4) (2002).
[Crossref] [PubMed]

M. Berry, “Coloured phase singularities,” New J. Phys. 4, 66.1–66.14 (2002).
[Crossref]

M. Berry, “Exploring the colours of dark light,” New J. Phys. 4, 74.1–74.14 (2002).
[Crossref]

G. Popescu and A. Dogariu, “Spectral Anomalies at Wave-Front Dislocations,” Phys. Rev. Lett. 88, 183902(4) (2002).
[Crossref] [PubMed]

S. A. Ponomarenko and E. Wolf, “Spectral anomalies in a Fraunhofer diffraction pattern,” Opt. Lett. 27, 1211–1213 (2002).
[Crossref]

2001 (1)

1974 (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London A 336, 165–190 (1974).
[Crossref]

Angelsky, O. V.

Arkhelyuk, O. O.

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 196 (2004).
[Crossref]

Berry, M.

M. Berry, “Coloured phase singularities,” New J. Phys. 4, 66.1–66.14 (2002).
[Crossref]

M. Berry, “Exploring the colours of dark light,” New J. Phys. 4, 74.1–74.14 (2002).
[Crossref]

Berry, M. V.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London A 336, 165–190 (1974).
[Crossref]

Bezuhanov, K.

Bogatyryova, G. V.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge U. Press, Cambridge, 1999).

Desyatnikov, A. S.

A. S. Desyatnikov, Yu. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” in Progress in Optics, Vol. 47, Ed.E. Wolf, (Elsevier, Amstredam, 2005).
[Crossref]

Dogariu, A.

G. Popescu and A. Dogariu, “Spectral Anomalies at Wave-Front Dislocations,” Phys. Rev. Lett. 88, 183902(4) (2002).
[Crossref] [PubMed]

Dreischuh, A.

Egorov, Yu. A.

A. V. Volyar, Yu. A. Egorov, A. F. Rubass, and T. A. Fadeeva, “Fine structure of white optical vortices in crystals,” Tech. Phys. Lett. 30, 701–704 (2004).
[Crossref]

Fadeeva, T. A.

A. V. Volyar, Yu. A. Egorov, A. F. Rubass, and T. A. Fadeeva, “Fine structure of white optical vortices in crystals,” Tech. Phys. Lett. 30, 701–704 (2004).
[Crossref]

A. V. Volyar and T. A. Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
[Crossref]

A. V. Volyar and T. A. Fadeeva, “Decay and fusion of polarization umbilics in a singular beam passed though a crystal,” Opt. Spectrosc. 95, 792–799 (2003).
[Crossref]

Fel’de, C. V.

Fischer, D. G.

Gbur, G.

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” J. Opt. A 6, S239–S242 (2004).
[Crossref]

H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003).
[Crossref] [PubMed]

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).
[Crossref]

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behaviour of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901(4) (2002).
[Crossref] [PubMed]

Hanson, S. G.

Kivshar, Yu. S.

K. Motzek, Yu. S. Kivshar, M.-F. Shih, and G. A. Swartzlander, “Spatial coherence singularities and incoherent vortex solitons,” J. Opt. Soc. Am. B 22, 1437–1442 (2005).
[Crossref]

A. S. Desyatnikov, Yu. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” in Progress in Optics, Vol. 47, Ed.E. Wolf, (Elsevier, Amstredam, 2005).
[Crossref]

Leach, J.

J. Leach and M. J. Padgett, “Observation of chromatic effects near a while-light vortex,” New J. Phys. 5, 154.1–154.7 (2003).
[Crossref]

Maksimyak, A. P.

Maksimyak, P. P.

Maleev, I. D.

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. B 21, 1895–1900 (2004).
[Crossref]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).
[Crossref] [PubMed]

Marathay, A. S.

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).
[Crossref] [PubMed]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. B 21, 1895–1900 (2004).
[Crossref]

Motzek, K.

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London A 336, 165–190 (1974).
[Crossref]

Padgett, M. J.

J. Leach and M. J. Padgett, “Observation of chromatic effects near a while-light vortex,” New J. Phys. 5, 154.1–154.7 (2003).
[Crossref]

Palacios, D. M.

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).
[Crossref] [PubMed]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. B 21, 1895–1900 (2004).
[Crossref]

Paulus, G. G.

Polyanskii, P. V.

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 196 (2004).
[Crossref]

G. V. Bogatyryova, C. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–890 (2003).
[Crossref] [PubMed]

Ponomarenko, S. A.

Popescu, G.

G. Popescu and A. Dogariu, “Spectral Anomalies at Wave-Front Dislocations,” Phys. Rev. Lett. 88, 183902(4) (2002).
[Crossref] [PubMed]

Rubass, A. F.

A. V. Volyar, Yu. A. Egorov, A. F. Rubass, and T. A. Fadeeva, “Fine structure of white optical vortices in crystals,” Tech. Phys. Lett. 30, 701–704 (2004).
[Crossref]

Schätzel, M. G.

Schmit, J.

G. A. Swartzlander and J. Schmit, “Temporal Correlation Vortices and Topological Dispersion,” Phys. Rev. Lett. 93, 093901(4) (2004).
[Crossref] [PubMed]

Schouten, H. F.

Shih, M.-F.

Soskin, M. S.

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 196 (2004).
[Crossref]

G. V. Bogatyryova, C. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–890 (2003).
[Crossref] [PubMed]

See, e.g., a comprehensive review paper,M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, Vol. 42, Ed. E. Wolf, (Elsevier, Amstredam, 2001).

Swartzlander, G. A.

K. Motzek, Yu. S. Kivshar, M.-F. Shih, and G. A. Swartzlander, “Spatial coherence singularities and incoherent vortex solitons,” J. Opt. Soc. Am. B 22, 1437–1442 (2005).
[Crossref]

I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. B 21, 1895–1900 (2004).
[Crossref]

G. A. Swartzlander and J. Schmit, “Temporal Correlation Vortices and Topological Dispersion,” Phys. Rev. Lett. 93, 093901(4) (2004).
[Crossref] [PubMed]

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).
[Crossref] [PubMed]

G. A. Swartzlander, “Optical vortex filaments,” in Optical Vortices, eds.M. Vasnetsov and K. Staliunas, Vol. 228 of Horizons in World Physics (Nova Science, Huntington, N.Y., 1999).

See an extensive list of references on optical vortices inG. A. Swartzlander, Singular Optics/Optical Vortex References, http://www.u.arizona.edu/”grovers/SO/so.html.

Torner, L.

A. S. Desyatnikov, Yu. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” in Progress in Optics, Vol. 47, Ed.E. Wolf, (Elsevier, Amstredam, 2005).
[Crossref]

Vasnetsov, M. V.

See, e.g., a comprehensive review paper,M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, Vol. 42, Ed. E. Wolf, (Elsevier, Amstredam, 2001).

Visser, T. D.

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” J. Opt. A 6, S239–S242 (2004).
[Crossref]

D. G. Fischer and T. D. Visser, “Spatial correlation properties of focused partially coherent fields,” J. Opt. Soc. Am. A 21, 2097–2102 (2004).
[Crossref]

H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003).
[Crossref] [PubMed]

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).
[Crossref]

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behaviour of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901(4) (2002).
[Crossref] [PubMed]

Volyar, A. V.

A. V. Volyar, Yu. A. Egorov, A. F. Rubass, and T. A. Fadeeva, “Fine structure of white optical vortices in crystals,” Tech. Phys. Lett. 30, 701–704 (2004).
[Crossref]

See also a review paper A. V. Volyar, “Singular beams in unixial crystals,” Ukr. J. Phys. 4, 400–408 (2004).

A. V. Volyar and T. A. Fadeeva, “Decay and fusion of polarization umbilics in a singular beam passed though a crystal,” Opt. Spectrosc. 95, 792–799 (2003).
[Crossref]

A. V. Volyar and T. A. Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
[Crossref]

Walther, H.

Wolf, E.

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” J. Opt. A 6, S239–S242 (2004).
[Crossref]

H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003).
[Crossref] [PubMed]

G. V. Bogatyryova, C. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–890 (2003).
[Crossref] [PubMed]

S. A. Ponomarenko and E. Wolf, “Spectral anomalies in a Fraunhofer diffraction pattern,” Opt. Lett. 27, 1211–1213 (2002).
[Crossref]

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behaviour of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901(4) (2002).
[Crossref] [PubMed]

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge U. Press, Cambridge, 1999).

J. Opt. A (1)

G. Gbur, T. D. Visser, and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” J. Opt. A 6, S239–S242 (2004).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

New J. Phys. (4)

M. Berry, “Coloured phase singularities,” New J. Phys. 4, 66.1–66.14 (2002).
[Crossref]

M. Berry, “Exploring the colours of dark light,” New J. Phys. 4, 74.1–74.14 (2002).
[Crossref]

J. Leach and M. J. Padgett, “Observation of chromatic effects near a while-light vortex,” New J. Phys. 5, 154.1–154.7 (2003).
[Crossref]

M. S. Soskin, P. V. Polyanskii, and O. O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 196 (2004).
[Crossref]

Opt. Commun. (1)

G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Spectrosc. (2)

A. V. Volyar and T. A. Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
[Crossref]

A. V. Volyar and T. A. Fadeeva, “Decay and fusion of polarization umbilics in a singular beam passed though a crystal,” Opt. Spectrosc. 95, 792–799 (2003).
[Crossref]

Phys. Rev. Lett. (4)

D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004).
[Crossref] [PubMed]

G. Popescu and A. Dogariu, “Spectral Anomalies at Wave-Front Dislocations,” Phys. Rev. Lett. 88, 183902(4) (2002).
[Crossref] [PubMed]

G. A. Swartzlander and J. Schmit, “Temporal Correlation Vortices and Topological Dispersion,” Phys. Rev. Lett. 93, 093901(4) (2004).
[Crossref] [PubMed]

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behaviour of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901(4) (2002).
[Crossref] [PubMed]

Proc. R. Soc. London A (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London A 336, 165–190 (1974).
[Crossref]

Tech. Phys. Lett. (1)

A. V. Volyar, Yu. A. Egorov, A. F. Rubass, and T. A. Fadeeva, “Fine structure of white optical vortices in crystals,” Tech. Phys. Lett. 30, 701–704 (2004).
[Crossref]

Ukr. J. Phys. (1)

See also a review paper A. V. Volyar, “Singular beams in unixial crystals,” Ukr. J. Phys. 4, 400–408 (2004).

Other (5)

G. A. Swartzlander, “Optical vortex filaments,” in Optical Vortices, eds.M. Vasnetsov and K. Staliunas, Vol. 228 of Horizons in World Physics (Nova Science, Huntington, N.Y., 1999).

See, e.g., a comprehensive review paper,M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, Vol. 42, Ed. E. Wolf, (Elsevier, Amstredam, 2001).

See an extensive list of references on optical vortices inG. A. Swartzlander, Singular Optics/Optical Vortex References, http://www.u.arizona.edu/”grovers/SO/so.html.

A. S. Desyatnikov, Yu. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” in Progress in Optics, Vol. 47, Ed.E. Wolf, (Elsevier, Amstredam, 2005).
[Crossref]

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge U. Press, Cambridge, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for the generation of partially incoherent double-charge vortices; HL - halogen white-light source (50 W), L - lenses, D - diffuser, A - aperture, P - polarizers, λ/4 - quarter-wave plate (532 nm), MO - microscope objectives, UaC- uniaxial crystal.

Fig. 2.
Fig. 2.

(a) Color images of the vortex beam at different distances after the crystal for two different apertures: D = 1 mm (upper row) and D = 13 mm (lower row). (b) Visibility length as a function of aperture size D. Solid line is ~ 1/D fit to the experimental points. Inset: transverse beam profiles for the case of low coherence.

Fig. 3.
Fig. 3.

Focusing of the polychromatic vortex beam: f = 60 mm, D = 1 mm. Left - beam before the lens; right - intensity distribution after the lens for different positions relative to the focal point.

Fig. 4.
Fig. 4.

The same as in Fig. 3 for f = 35 mm and D = 13 mm. Left - beam before the lens; right - intensity distribution for different distances behind the focal point.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ ( r 1 , r 2 ; z ) = E * ( r 2 , z , t ) E ( r 1 , z , t ) ,

Metrics