Abstract

We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400-nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. Rolland and P. B. Corkum, �??Compression of high-power optical pulses,�?? J. Opt. Soc. Am. B 5, 641 (1988).
    [CrossRef]
  2. M. Nisoli,, S. De Silvestri, O. Sveto, R. Szipcs, K. Ferencz, Ch. Spielmann, S. Sartania, F. Krausz, �??Compression of high-energy laser pulses below 5 fs,�?? Opt. Lett. 22, 522 (1997).
    [CrossRef] [PubMed]
  3. R. L. Fork, C. H. Brito Cruz, P. C. Becker and C. V. Shank �??Compression of optical pulses to 6 fs by using cubic phase compensation,�?? Opt. Lett. 12, 7, 483 (1987).
    [CrossRef] [PubMed]
  4. T. Wilhelm, J. Piel, and E. Riedle, �??Sub-20- fs pulses tunable across the visible f rom a blue-pumped single-pass noncollinear parametric converter,�?? Opt. Lett. 22, 1494 (1997).
    [CrossRef]
  5. I.N. Ross, P. Matousek, G.H.C. New, and K. Osvay, �??Analysis and optimization of optical parametric chirped pulse amplification,�?? J. Opt. Soc. Am. B 19, 2945 (2002).
    [CrossRef]
  6. G. M. Gale, M. Cavallari, T. J. Driscoll, F. Hache, �??Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,�?? Opt. Lett. 20, 1562 (1995).
    [CrossRef] [PubMed]
  7. G. Cerullo and S. De Silvestri, �??Ultrafast optical parametric amplifiers,�?? Rev. Sci. Instrum. 74, 1, 1 (2003).
    [CrossRef]
  8. SNLO is a software for simulating wave mixing from Sandia National Laboratories. (http://www.sandia.gov/imrl/XWEB1128/snloftp.htm)
  9. M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, �??Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors,�?? Opt. Lett. 26, 1155 (2001).
    [CrossRef]
  10. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, �??Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,�?? Appl. Phys. Lett. 74, 2268 (1999).
    [CrossRef]
  11. A. Baltuska and T. Kobayashi, �??Adaptive shaping of two-cycle visible pulses using a flexible mirror,�?? Appl. Phys. B 75, 427 (2002).
    [CrossRef]
  12. E. Zeromskis, A. Dubietis, G. Tamosauskas, and A. Piskarskas, �??Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams,�?? Opt. Commun. 203, 435 (2002).
    [CrossRef]
  13. P.St.J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  14. T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, �??High average power supercontinuum generation in photonic crystal fibers,�?? Opt. Commun. 228, 71 (2003).
    [CrossRef]
  15. R.L. Sutherland, Handbook of nonlinear optics, (Dekker, New York, 2003).
    [CrossRef]
  16. Schott Catalog (http://www.schott.com/optics_devices/english/download/).
  17. S. Linden, H. Giessen, and J. Kuhl, �??XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,�?? Physical Status Solidi B Conference Title: Phys. Status Solidi B (Germany), 206, 119-124 (1998).
    [CrossRef]
  18. J. M. Dudley and S. Coen, "Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber," Opt. Express 12, 2423-2428 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2423">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2423</a>.
    [CrossRef] [PubMed]

Appl. Phys. B (1)

A. Baltuska and T. Kobayashi, �??Adaptive shaping of two-cycle visible pulses using a flexible mirror,�?? Appl. Phys. B 75, 427 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, �??Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,�?? Appl. Phys. Lett. 74, 2268 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

E. Zeromskis, A. Dubietis, G. Tamosauskas, and A. Piskarskas, �??Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams,�?? Opt. Commun. 203, 435 (2002).
[CrossRef]

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, �??High average power supercontinuum generation in photonic crystal fibers,�?? Opt. Commun. 228, 71 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Physical Status Solidi B (1)

S. Linden, H. Giessen, and J. Kuhl, �??XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,�?? Physical Status Solidi B Conference Title: Phys. Status Solidi B (Germany), 206, 119-124 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, �??Ultrafast optical parametric amplifiers,�?? Rev. Sci. Instrum. 74, 1, 1 (2003).
[CrossRef]

Science (1)

P.St.J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (3)

R.L. Sutherland, Handbook of nonlinear optics, (Dekker, New York, 2003).
[CrossRef]

Schott Catalog (http://www.schott.com/optics_devices/english/download/).

SNLO is a software for simulating wave mixing from Sandia National Laboratories. (http://www.sandia.gov/imrl/XWEB1128/snloftp.htm)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

The “magic” phase-matching condition. Calculated phase-matching curve of a Type 1 BBO crystal pumped by 400 nm light at a pump tilt angle of 3.7°.

Fig. 2.
Fig. 2.

(a) Calculated phase-matching curves around degeneracy in a type 1 BBO crystal pumped by 410 nm light (black) or a broadband pump around 405 nm (red) in 2 nm increments.

Fig. 2.
Fig. 2.

(b) Phase-matching map for a broadband pump in a BBO crystal, for type 1 process.

Fig. 3.
Fig. 3.

Experimental setup of the ultra-broadband parametric amplification system. BS: beam sampler, HWP: half-wave plate, PBS: polarization beam splitter, PCF: photonic crystal fiber, BD: beam dump, FSP: fused silica prism.

Fig. 4.
Fig. 4.

Continuum created in a 20 cm long photonic crystal fiber with zero-dispersion at 800 nm.

Fig. 5.
Fig. 5.

Frequency doubled spectrum as a function of type 1 BBO crystal thickness.

Fig. 6.
Fig. 6.

Spectrogram of supercontinuum generated in a 20 cm long photonic crystal fiber with a zero-dispersion wavelength at 810 nm. The dashed lines represent phase-matching conditions for certain pump wavelengths according to figure 2.

Fig. 7.
Fig. 7.

Measured amplified spectra at two different delay positions in the case of a 20 cm long photonic crystal fiber and a pump duration of 500 fs.

Fig. 8.
Fig. 8.

Spectrogram of supercontinuum generated in a 5 cm long photonic crystal fiber with a zero-dispersion wavelength at 810 nm. The dashed lines represent phase-matching conditions for certain pump wavelengths according to figure 2.

Fig. 9.
Fig. 9.

Measured 400 nm broad phase-matched parametrically amplified spectrum, photonic crystal fiber length 5 cm and a pump duration of 500 fs.

Fig. 10.
Fig. 10.

Phase-matching curves with added angular dispersion in order to obtain an octave spanning parametric amplification bandwidth.

Metrics