Abstract

We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400-nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Automatic time delay optimization between the pump and seed pulses of a broadly tunable femtosecond optical parametric amplifier

Eric Freysz, Joel Plantard, Remy Gillet, Rysvan Maleck Rassoul, Philippe Grelu, and André Ducasse
Appl. Opt. 37(12) 2411-2413 (1998)

High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier

T. V. Andersen, O. Schmidt, C. Bruchmann, J. Limpert, C. Aguergaray, E. Cormier, and A. Tünnermann
Opt. Express 14(11) 4765-4773 (2006)

Parametric amplification and compression to ultrashort pulse duration of resonant linear waves

C. Aguergaray, T. V. Andersen, D. N. Schimpf, O. Schmidt, J. Rothhardt, T. Schreiber, J. Limpert, E. Cormier, and A. Tünnermann
Opt. Express 15(9) 5699-5710 (2007)

References

  • View by:
  • |
  • |
  • |

  1. C. Rolland and P. B. Corkum, “Compression of high-power optical pulses,” J. Opt. Soc. Am. B 5, 641 (1988).
    [Crossref]
  2. M. Nisoli, S. De Silvestri, O. Sveto, R. Szipcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522 (1997).
    [Crossref] [PubMed]
  3. R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank “Compression of optical pulses to 6 fs by using cubic phase compensation,” Opt. Lett. 12, 7, 483 (1987).
    [Crossref] [PubMed]
  4. T. Wilhelm, J. Piel, and E. Riedle,”Sub-20- fs pulses tunable across the visible f rom a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22, 1494 (1997).
    [Crossref]
  5. I.N. Ross, P. Matousek, G.H.C. New, and K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 19, 2945 (2002).
    [Crossref]
  6. G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,” Opt. Lett. 20, 1562 (1995).
    [Crossref] [PubMed]
  7. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,“ Rev. Sci. Instrum. 74, 1, 1 (2003).
    [Crossref]
  8. SNLO is a software for simulating wave mixing from Sandia National Laboratories. (http://www.sandia.gov/imrl/XWEB1128/snloftp.htm)
  9. M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, “Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors,” Opt. Lett. 26, 1155 (2001).
    [Crossref]
  10. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
    [Crossref]
  11. A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75, 427 (2002).
    [Crossref]
  12. E. Zeromskis, A. Dubietis, G. Tamosauskas, and A. Piskarskas, “Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams,” Opt. Commun. 203, 435 (2002).
    [Crossref]
  13. P.St.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref] [PubMed]
  14. T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228, 71 (2003).
    [Crossref]
  15. R.L. Sutherland, Handbook of nonlinear optics, (Dekker, New York, 2003).
    [Crossref]
  16. Schott Catalog (http://www.schott.com/optics_devices/english/download/).
  17. S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Physical Status Solidi B Conference Title: Phys. Status Solidi B (Germany),  206, 119–124 (1998).
    [Crossref]
  18. J. M. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber,” Opt. Express 12, 2423–2428 (2004),http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2423
    [Crossref] [PubMed]

2004 (1)

2003 (3)

P.St.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228, 71 (2003).
[Crossref]

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,“ Rev. Sci. Instrum. 74, 1, 1 (2003).
[Crossref]

2002 (3)

I.N. Ross, P. Matousek, G.H.C. New, and K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 19, 2945 (2002).
[Crossref]

A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75, 427 (2002).
[Crossref]

E. Zeromskis, A. Dubietis, G. Tamosauskas, and A. Piskarskas, “Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams,” Opt. Commun. 203, 435 (2002).
[Crossref]

2001 (1)

1999 (1)

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
[Crossref]

1998 (1)

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Physical Status Solidi B Conference Title: Phys. Status Solidi B (Germany),  206, 119–124 (1998).
[Crossref]

1997 (2)

1995 (1)

1988 (1)

1987 (1)

Angelow, G.

Baltuska, A.

A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75, 427 (2002).
[Crossref]

Becker, P. C.

Brito Cruz, C. H.

Cavallari, M.

Cerullo, G.

Coen, S.

Corkum, P. B.

De Silvestri, S.

Driscoll, T. J.

Dubietis, A.

E. Zeromskis, A. Dubietis, G. Tamosauskas, and A. Piskarskas, “Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams,” Opt. Commun. 203, 435 (2002).
[Crossref]

Dudley, J. M.

Ferencz, K.

Fork, R. L.

Gale, G. M.

Gallmann, L.

Giessen, H.

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Physical Status Solidi B Conference Title: Phys. Status Solidi B (Germany),  206, 119–124 (1998).
[Crossref]

Hache, F.

Hansen, K. P.

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228, 71 (2003).
[Crossref]

Keller, U.

Kobayashi, T.

A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75, 427 (2002).
[Crossref]

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
[Crossref]

Krausz, F.

Kuhl, J.

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Physical Status Solidi B Conference Title: Phys. Status Solidi B (Germany),  206, 119–124 (1998).
[Crossref]

Limpert, J.

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228, 71 (2003).
[Crossref]

Linden, S.

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Physical Status Solidi B Conference Title: Phys. Status Solidi B (Germany),  206, 119–124 (1998).
[Crossref]

Matousek, P.

Matuschek, N.

New, G.H.C.

Nisoli, M.

Osvay, K.

Piel, J.

Piskarskas, A.

E. Zeromskis, A. Dubietis, G. Tamosauskas, and A. Piskarskas, “Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams,” Opt. Commun. 203, 435 (2002).
[Crossref]

Riedle, E.

Rolland, C.

Ross, I.N.

Russell, P.St.J.

P.St.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

Sakane, I.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
[Crossref]

Sartania, S.

Scheuer, V.

Schreiber, T.

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228, 71 (2003).
[Crossref]

Shank, C. V.

Shirakawa, A.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
[Crossref]

Spielmann, Ch.

Steinmeyer, G.

Sutherland, R.L.

R.L. Sutherland, Handbook of nonlinear optics, (Dekker, New York, 2003).
[Crossref]

Sveto, O.

Szipcs, R.

Takasaka, M.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
[Crossref]

Tamosauskas, G.

E. Zeromskis, A. Dubietis, G. Tamosauskas, and A. Piskarskas, “Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams,” Opt. Commun. 203, 435 (2002).
[Crossref]

Tschudi, T.

Tünnermann, A.

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228, 71 (2003).
[Crossref]

Wilhelm, T.

Zavelani-Rossi, M.

Zellmer, H.

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228, 71 (2003).
[Crossref]

Zeromskis, E.

E. Zeromskis, A. Dubietis, G. Tamosauskas, and A. Piskarskas, “Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams,” Opt. Commun. 203, 435 (2002).
[Crossref]

Appl. Phys. B (1)

A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75, 427 (2002).
[Crossref]

Appl. Phys. Lett. (1)

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

E. Zeromskis, A. Dubietis, G. Tamosauskas, and A. Piskarskas, “Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams,” Opt. Commun. 203, 435 (2002).
[Crossref]

T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Opt. Commun. 228, 71 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Phys. Status Solidi B (Germany) (1)

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Physical Status Solidi B Conference Title: Phys. Status Solidi B (Germany),  206, 119–124 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,“ Rev. Sci. Instrum. 74, 1, 1 (2003).
[Crossref]

Science (1)

P.St.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

Other (3)

R.L. Sutherland, Handbook of nonlinear optics, (Dekker, New York, 2003).
[Crossref]

Schott Catalog (http://www.schott.com/optics_devices/english/download/).

SNLO is a software for simulating wave mixing from Sandia National Laboratories. (http://www.sandia.gov/imrl/XWEB1128/snloftp.htm)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

The “magic” phase-matching condition. Calculated phase-matching curve of a Type 1 BBO crystal pumped by 400 nm light at a pump tilt angle of 3.7°.

Fig. 2.
Fig. 2.

(a) Calculated phase-matching curves around degeneracy in a type 1 BBO crystal pumped by 410 nm light (black) or a broadband pump around 405 nm (red) in 2 nm increments.

Fig. 2.
Fig. 2.

(b) Phase-matching map for a broadband pump in a BBO crystal, for type 1 process.

Fig. 3.
Fig. 3.

Experimental setup of the ultra-broadband parametric amplification system. BS: beam sampler, HWP: half-wave plate, PBS: polarization beam splitter, PCF: photonic crystal fiber, BD: beam dump, FSP: fused silica prism.

Fig. 4.
Fig. 4.

Continuum created in a 20 cm long photonic crystal fiber with zero-dispersion at 800 nm.

Fig. 5.
Fig. 5.

Frequency doubled spectrum as a function of type 1 BBO crystal thickness.

Fig. 6.
Fig. 6.

Spectrogram of supercontinuum generated in a 20 cm long photonic crystal fiber with a zero-dispersion wavelength at 810 nm. The dashed lines represent phase-matching conditions for certain pump wavelengths according to figure 2.

Fig. 7.
Fig. 7.

Measured amplified spectra at two different delay positions in the case of a 20 cm long photonic crystal fiber and a pump duration of 500 fs.

Fig. 8.
Fig. 8.

Spectrogram of supercontinuum generated in a 5 cm long photonic crystal fiber with a zero-dispersion wavelength at 810 nm. The dashed lines represent phase-matching conditions for certain pump wavelengths according to figure 2.

Fig. 9.
Fig. 9.

Measured 400 nm broad phase-matched parametrically amplified spectrum, photonic crystal fiber length 5 cm and a pump duration of 500 fs.

Fig. 10.
Fig. 10.

Phase-matching curves with added angular dispersion in order to obtain an octave spanning parametric amplification bandwidth.

Metrics