Abstract

A novel organic electro-optic (EO) modulator using transparent conducting oxides (ZnO and In2O3) as electrodes is demonstrated for the first time. The modulator employs the poled guest-host chromophore/polymer material AJL8/APC having r33=35pm/V and is able to achieve a low Vπ=2.8 V switching voltage for an 8mm-long device at a wavelength of 1.31μm. This corresponds to a Vπ=1.1 V switching voltage for a 1cm-long device in a push-pull configuration. The push-pull VπL figure of merit normalized for the EO coefficient is thus 1.1V-cm/(35 pm/V), which is 3–4x lower than that can be achieved with a convetional modulator structure. The bottom electrode is ZnO grown by Metal-Organic Vapor Deposition (MOCVD) and top electrode In2O3 deposited using ion-beam assisted deposition. The top electrode is directly deposited on the guest-host organic material. The design and fabrication considerations for the modulator are also discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Dagli, �??Wide-Bandwidth Lasers and Modulators for RF Photonics,�?? IEEE Trans. Microwave Theory Tech. 47, 1151-1171 (1999).
    [CrossRef]
  2. L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend and A. Jen, �??From molecules to opto-chips: organic electro-optic materials,�?? J. Mater. Chem. 9, 1905-1920 (1999).
    [CrossRef]
  3. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L.R. Dalton, B. Robinson, W. H. Steier, �??Low (sub-1-Volt) half voltage polymeric electro-optic modulators achieved y controlling Chromophore shape,�?? Science 288, 119-122 (2000).
    [CrossRef]
  4. P. Zhu, H. Kang, M. E. van der Boom, Z. Liu, G. Xu, J. Ma, D. Zhou, S. Ho, and T. J. Marks, �??Self-assembled materials and devices that process light,�?? in Optical Materials in Defence Systems Technology, Anthony W. Vere, James G. Grote, eds., Proc. SPIE 5621, 105-116 (2004).
    [CrossRef]
  5. J. Luo, S. Liu, M. Haller, J. Kang, T. Kim, S. Jang, B. Chen, N. Tucker, H. Li, H. Tang, L. Dalton, Y. Liao, B. H. Robinson, and A. K-Y. Jen, �??Recent progress in developing highly efficient and thermally stable nonlinear optical polymers for electro-optics,�?? in Organic Photonic Materials and Devices VI, J. G. Grote, T. Kaino, eds. Proc. SPIE 5351, 36-43 (2004).
    [CrossRef]
  6. Z. Liu, S. T. Ho, S. S. Chang, and T. J. Marks, "Waveguide Electro-Optic Modulator Based on Organic Self-Assembled Superlattice (SAS)," 2002 Conference on Lasers and Electro-Optic 73, CtuK5, 196-197 (2002).
  7. P. Zhu, van der Boom ME, H. Kang, G. Evmenenko, P. Dutta,T. Marks �??Realization of expeditious layer-by-layer siloxane-based self-assembly as an efficient route to structurally regular a centric super lattices with large electro-optic responses,�?? Chem. Mater. 14, 4982-4989 (2002).
    [CrossRef]
  8. M. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. Sterier, H. Fetterman, L. Dalton, �??Recent advances in electrooptical polymer modulators incorporating highly nonlinear Chromophore,�?? IEEE J. Sel. Top. Quantum Electron. 7, 826-835 (2001).
    [CrossRef]
  9. H. Lee, W. Hwang, M. Oh, H. Park, T. Zyung and J. Kim, �??High performance electro-optic polymer waveguide device�??, Appl. Phys. Lett. 71, 3779-3781 (1997).
    [CrossRef]
  10. P. Tang, D. J. Towner, A. L. Meier, and B. W. Wessels, �??Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film,�?? Appl. Phys. Lett. 85, 4615-4617 (2004).
    [CrossRef]
  11. J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. Zhang, W. H. Sterier, �??Effect of conductivity and dilectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,�?? Opt. Eng. 40, 2464-2473 (2001).
    [CrossRef]
  12. J. P. Drummond, S.J. Clarson, J. S. Zetts, F. K. Hopkins and S. J. Caracci, �??Enhanced electro-optic poling in guest systems using conductive polymer-based cladding layers,�?? Appl. Phys. Lett. 74, 368-370 (1999)
    [CrossRef]
  13. J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, C. R. Kannewurf, �??MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,�?? J. Am. Chem. Soc. 127, 5613-5624 (2005).
    [CrossRef] [PubMed]
  14. E. Martin, M. Yan, M. Lane, J. Ireland, C. Kannewurf, R. P. H. Chang, �??Properties of multilayer transparent conducting oxide films,�?? Thin Solid Films 461, 309-315 (2004).
    [CrossRef]
  15. G. Xu, J. Ma, S. T. Ho, T. J. Marks, "Low-voltage electro-optic modulator structure using transparent conducting oxide with high conductivity-loss ratio as electrode," IEEE LEOS Avonics Fiber Optics and Photonics Conference, ThC 4, Minneapolis, 22 September 2005.
  16. G.L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P.K.L. Yu, �??Ultrahigh-speed traveling-wave electro absorption modulator-design and analysis�??, IEEE Trans. Microwave Theory Tech. 47, 1177-1183 (1999).
    [CrossRef]

2002 Conf. on Lasers and Electro-Optic (1)

Z. Liu, S. T. Ho, S. S. Chang, and T. J. Marks, "Waveguide Electro-Optic Modulator Based on Organic Self-Assembled Superlattice (SAS)," 2002 Conference on Lasers and Electro-Optic 73, CtuK5, 196-197 (2002).

Appl. Phys. Lett. (3)

H. Lee, W. Hwang, M. Oh, H. Park, T. Zyung and J. Kim, �??High performance electro-optic polymer waveguide device�??, Appl. Phys. Lett. 71, 3779-3781 (1997).
[CrossRef]

P. Tang, D. J. Towner, A. L. Meier, and B. W. Wessels, �??Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film,�?? Appl. Phys. Lett. 85, 4615-4617 (2004).
[CrossRef]

J. P. Drummond, S.J. Clarson, J. S. Zetts, F. K. Hopkins and S. J. Caracci, �??Enhanced electro-optic poling in guest systems using conductive polymer-based cladding layers,�?? Appl. Phys. Lett. 74, 368-370 (1999)
[CrossRef]

Chem. Mater. (1)

P. Zhu, van der Boom ME, H. Kang, G. Evmenenko, P. Dutta,T. Marks �??Realization of expeditious layer-by-layer siloxane-based self-assembly as an efficient route to structurally regular a centric super lattices with large electro-optic responses,�?? Chem. Mater. 14, 4982-4989 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. Sterier, H. Fetterman, L. Dalton, �??Recent advances in electrooptical polymer modulators incorporating highly nonlinear Chromophore,�?? IEEE J. Sel. Top. Quantum Electron. 7, 826-835 (2001).
[CrossRef]

IEEE LEOS Conf. September 2005 (1)

G. Xu, J. Ma, S. T. Ho, T. J. Marks, "Low-voltage electro-optic modulator structure using transparent conducting oxide with high conductivity-loss ratio as electrode," IEEE LEOS Avonics Fiber Optics and Photonics Conference, ThC 4, Minneapolis, 22 September 2005.

IEEE Trans. Microwave Theory Tech. (2)

G.L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P.K.L. Yu, �??Ultrahigh-speed traveling-wave electro absorption modulator-design and analysis�??, IEEE Trans. Microwave Theory Tech. 47, 1177-1183 (1999).
[CrossRef]

N. Dagli, �??Wide-Bandwidth Lasers and Modulators for RF Photonics,�?? IEEE Trans. Microwave Theory Tech. 47, 1151-1171 (1999).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, C. R. Kannewurf, �??MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,�?? J. Am. Chem. Soc. 127, 5613-5624 (2005).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend and A. Jen, �??From molecules to opto-chips: organic electro-optic materials,�?? J. Mater. Chem. 9, 1905-1920 (1999).
[CrossRef]

Opt. Eng. (1)

J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. Zhang, W. H. Sterier, �??Effect of conductivity and dilectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers,�?? Opt. Eng. 40, 2464-2473 (2001).
[CrossRef]

Proc. SPIE 5351 (1)

J. Luo, S. Liu, M. Haller, J. Kang, T. Kim, S. Jang, B. Chen, N. Tucker, H. Li, H. Tang, L. Dalton, Y. Liao, B. H. Robinson, and A. K-Y. Jen, �??Recent progress in developing highly efficient and thermally stable nonlinear optical polymers for electro-optics,�?? in Organic Photonic Materials and Devices VI, J. G. Grote, T. Kaino, eds. Proc. SPIE 5351, 36-43 (2004).
[CrossRef]

Science (1)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L.R. Dalton, B. Robinson, W. H. Steier, �??Low (sub-1-Volt) half voltage polymeric electro-optic modulators achieved y controlling Chromophore shape,�?? Science 288, 119-122 (2000).
[CrossRef]

Thin Solid Films (1)

E. Martin, M. Yan, M. Lane, J. Ireland, C. Kannewurf, R. P. H. Chang, �??Properties of multilayer transparent conducting oxide films,�?? Thin Solid Films 461, 309-315 (2004).
[CrossRef]

Other (1)

P. Zhu, H. Kang, M. E. van der Boom, Z. Liu, G. Xu, J. Ma, D. Zhou, S. Ho, and T. J. Marks, �??Self-assembled materials and devices that process light,�?? in Optical Materials in Defence Systems Technology, Anthony W. Vere, James G. Grote, eds., Proc. SPIE 5621, 105-116 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Structure of a TCO modulator using poled AJL8/APC as the EO layer and ZnO and In2O3 as the electrodes.

Fig. 2.
Fig. 2.

Dependence modulation bandwidth on the conductivity of the TCO electrode.

Fig. 3.
Fig. 3.

Modulation response of the TCO modulator. Trace 1 is the applied voltage and trace 2 the optical intensity at the output side of the modulator.

Tables (2)

Tables Icon

Table 1. Layer structure of a conventional EO modulator a

Tables Icon

Table 2. Layer structure of a TCO EO modulator.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V π = λd n 3 rLΓ .

Metrics