Abstract

We describe the use of two-photon absorption in submicron silicon wire waveguides for all-optical switching by cross-absorption modulation. Optical pulses of 3.2 ps were successfully converted from high power pump to low power continuous-wave signal with a fast recovery time. High speed operation was based on the induced optical absorption from non-degenerate two-photon absorption inside the waveguides.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, H. T. Morita, �??Microphotonics devices based on silicon microfabrication technology,�?? IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
    [CrossRef]
  2. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, �??Optical add-drop multiplexers based on Si-wire waveguides,�?? Appl. Phys. Lett. 86, 191107
  3. K. Sasaki, F. Ohno, A. Motegi, T. Baba, �??Arrayed waveguide grating of 70x60 mu m(2) size based on Si photonic wire waveguides,�?? Electron. Lett. 41, 801-802 (2005)
    [CrossRef]
  4. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, �??Fast on-chip all-optical switches and memories using silicon photonic crystal with extremely low operation energy,�?? in Proceeding of Conference on Lasers and Electro-Optics, CLEO 2005, (Optical Society of America, Baltimore, California, 2005), QPDA5.
  5. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, �??All-optical control of light on a silicon chip,�?? Nature 431, 1081-1084 (2004)
    [CrossRef] [PubMed]
  6. Q. Xu, V. R. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Express 12, 4437-4442 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437</a>
    [CrossRef] [PubMed]
  7. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12, 3713-3718 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713</a>
    [CrossRef] [PubMed]
  8. T. K. Liang, H. K. Tsang, �??Role of free carriers from two-photon absorption in Raman amplification silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84, 2745-2747 (2004).
    [CrossRef]
  9. H. K. Tsang, P.A.Snow, I.E.Day, I.H.White, R.V.Penty, R.S.Grant, Z.Su, G.T.Kennedy and W.Sibbett, �??All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,�?? Appl. Phys. Lett. 62, 1451-1453 (1993).
    [CrossRef]
  10. D. J. Moss, L. Fu, I. Littler, B. J. Eggleton, �??Ultrafast all-optical modulation via two-photon absorption in silicon-insulator waveguides,�?? Electron. Lett. 41, 320-321 (2005)
    [CrossRef]
  11. C. Rauscher, R. Laenen, �??Analysis of picosecond mid-infrared pulses by two-photon absorption in germanium,�?? J. Appl. Phys. 81, 2818-2821 (1997).
    [CrossRef]
  12. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, R. Baets, �??Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,�?? IEEE Photonics Technol. Lett. 16, 1328-1330 (2004).
    [CrossRef]
  13. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets R, �??An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,�?? IEEE J. Quantum Electron. 38, 949-955 (2002).
    [CrossRef]
  14. G. I. Stegeman, �??Guided wave approaches to optical bistability,�?? IEEE J. Quantum Electron. 18, 1610-1619 (1982).
    [CrossRef]
  15. M. Sheik-Bahae, J.Wang and E.W. Van Stryland, �??Nondegenerate optical Kerr effect in semiconductors�??, IEEE J. Quantum Electron. 30, 249-255 (1994).
    [CrossRef]
  16. M. Dinu, F. Quochi and H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82, 2954-2956 (2003).
    [CrossRef]

Appl. Phys. Lett.

T. K. Liang, H. K. Tsang, �??Role of free carriers from two-photon absorption in Raman amplification silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

H. K. Tsang, P.A.Snow, I.E.Day, I.H.White, R.V.Penty, R.S.Grant, Z.Su, G.T.Kennedy and W.Sibbett, �??All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,�?? Appl. Phys. Lett. 62, 1451-1453 (1993).
[CrossRef]

M. Dinu, F. Quochi and H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, �??Optical add-drop multiplexers based on Si-wire waveguides,�?? Appl. Phys. Lett. 86, 191107

Electron. Lett.

K. Sasaki, F. Ohno, A. Motegi, T. Baba, �??Arrayed waveguide grating of 70x60 mu m(2) size based on Si photonic wire waveguides,�?? Electron. Lett. 41, 801-802 (2005)
[CrossRef]

D. J. Moss, L. Fu, I. Littler, B. J. Eggleton, �??Ultrafast all-optical modulation via two-photon absorption in silicon-insulator waveguides,�?? Electron. Lett. 41, 320-321 (2005)
[CrossRef]

IEEE J. Quantum Electron.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets R, �??An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,�?? IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

G. I. Stegeman, �??Guided wave approaches to optical bistability,�?? IEEE J. Quantum Electron. 18, 1610-1619 (1982).
[CrossRef]

M. Sheik-Bahae, J.Wang and E.W. Van Stryland, �??Nondegenerate optical Kerr effect in semiconductors�??, IEEE J. Quantum Electron. 30, 249-255 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, H. T. Morita, �??Microphotonics devices based on silicon microfabrication technology,�?? IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

IEEE Photonics Technol. Lett.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, R. Baets, �??Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,�?? IEEE Photonics Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

J. Appl. Phys.

C. Rauscher, R. Laenen, �??Analysis of picosecond mid-infrared pulses by two-photon absorption in germanium,�?? J. Appl. Phys. 81, 2818-2821 (1997).
[CrossRef]

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, �??All-optical control of light on a silicon chip,�?? Nature 431, 1081-1084 (2004)
[CrossRef] [PubMed]

Opt. Express

Other

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, �??Fast on-chip all-optical switches and memories using silicon photonic crystal with extremely low operation energy,�?? in Proceeding of Conference on Lasers and Electro-Optics, CLEO 2005, (Optical Society of America, Baltimore, California, 2005), QPDA5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of TPA in silicon. (a) degenerate TPA. (b) nondegenerate TPA.

Fig. 2.
Fig. 2.

Experimental setup. EDFA: Erbium-doped fiber amplifier, OBF: optical bandpass filter, PD: photodiode, DSO: digital sampling oscilloscope.

Fig. 3.
Fig. 3.

(a) Optical spectrum of combined signal before waveguide. (b) cw signal after optical filter.

Fig. 4.
Fig. 4.

(a) Pump pulses at 1552nm. (b) Cross-absorption modulated cw signal at 1536 nm

Fig. 5.
Fig. 5.

Cross-absorption modulated cw signal measured by streak camera.

Fig. 6.
Fig. 6.

Calculation of modulation depth as function of wire lengths

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dP pump dz z t = α P pump z t β deg P pump z t P pump z t
dP probe dz z t = α P probe z t β non -deg P pump z t P probe z t

Metrics