Abstract

We describe the use of two-photon absorption in submicron silicon wire waveguides for all-optical switching by cross-absorption modulation. Optical pulses of 3.2 ps were successfully converted from high power pump to low power continuous-wave signal with a fast recovery time. High speed operation was based on the induced optical absorption from non-degenerate two-photon absorption inside the waveguides.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
    [CrossRef]
  2. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107
  3. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 mu m(2) size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005)
    [CrossRef]
  4. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “Fast on-chip all-optical switches and memories using silicon photonic crystal with extremely low operation energy,” in Proceeding of Conference on Lasers and Electro-Optics, CLEO2005, (Optical Society of America, Baltimore, California, 2005), QPDA5.
  5. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004)
    [CrossRef] [PubMed]
  6. Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express 12, 4437–4442 (2004),http://www. opticsexpress.org/abstract. cfm?URI=OPEX-12-19-4437
    [CrossRef] [PubMed]
  7. R. L Espinola, J. I. Dadap, R. M. Osgood, S. J., McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713–3718 (2004), http://www. opticsexpress.org/abstract. cfm?URI=OPEX-12-16-3713
    [CrossRef] [PubMed]
  8. T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
    [CrossRef]
  9. H. K. Tsang, P.A. Snow, I.E. Day, I.H. White, R.V. Penty, R.S. Grant, Z. Su, G.T. Kennedy, and W. Sibbett, “All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
    [CrossRef]
  10. D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-insulator waveguides,” Electron. Lett. 41, 320–321 (2005)
    [CrossRef]
  11. C. Rauscher and R. Laenen, “Analysis of picosecond mid-infrared pulses by two-photon absorption in germanium,” J. Appl. Phys. 81, 2818–2821 (1997).
    [CrossRef]
  12. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
    [CrossRef]
  13. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets R, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
    [CrossRef]
  14. G. I. Stegeman, “Guided wave approaches to optical bistability,” IEEE J. Quantum Electron. 18,1610–1619 (1982).
    [CrossRef]
  15. M. Sheik-Bahae, J. Wang, and E.W. Van Stryland, ”Nondegenerate optical Kerr effect in semiconductors”, IEEE J. Quantum Electron. 30, 249–255 (1994).
    [CrossRef]
  16. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
    [CrossRef]

2005 (3)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 mu m(2) size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005)
[CrossRef]

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-insulator waveguides,” Electron. Lett. 41, 320–321 (2005)
[CrossRef]

2004 (5)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004)
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Opt. Express 12, 4437–4442 (2004),http://www. opticsexpress.org/abstract. cfm?URI=OPEX-12-19-4437
[CrossRef] [PubMed]

R. L Espinola, J. I. Dadap, R. M. Osgood, S. J., McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713–3718 (2004), http://www. opticsexpress.org/abstract. cfm?URI=OPEX-12-16-3713
[CrossRef] [PubMed]

T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[CrossRef]

2002 (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets R, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

1997 (1)

C. Rauscher and R. Laenen, “Analysis of picosecond mid-infrared pulses by two-photon absorption in germanium,” J. Appl. Phys. 81, 2818–2821 (1997).
[CrossRef]

1994 (1)

M. Sheik-Bahae, J. Wang, and E.W. Van Stryland, ”Nondegenerate optical Kerr effect in semiconductors”, IEEE J. Quantum Electron. 30, 249–255 (1994).
[CrossRef]

1993 (1)

H. K. Tsang, P.A. Snow, I.E. Day, I.H. White, R.V. Penty, R.S. Grant, Z. Su, G.T. Kennedy, and W. Sibbett, “All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[CrossRef]

1982 (1)

G. I. Stegeman, “Guided wave approaches to optical bistability,” IEEE J. Quantum Electron. 18,1610–1619 (1982).
[CrossRef]

Almeida, V. R.

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 mu m(2) size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005)
[CrossRef]

Baets, R.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Baets R, R.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets R, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004)
[CrossRef] [PubMed]

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Bienstman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets R, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets R, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107

Dadap, J. I.

Day, I.E.

H. K. Tsang, P.A. Snow, I.E. Day, I.H. White, R.V. Penty, R.S. Grant, Z. Su, G.T. Kennedy, and W. Sibbett, “All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[CrossRef]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets R, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[CrossRef]

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Eggleton, B. J.

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-insulator waveguides,” Electron. Lett. 41, 320–321 (2005)
[CrossRef]

Espinola, R. L

Fu, L.

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-insulator waveguides,” Electron. Lett. 41, 320–321 (2005)
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[CrossRef]

Grant, R.S.

H. K. Tsang, P.A. Snow, I.E. Day, I.H. White, R.V. Penty, R.S. Grant, Z. Su, G.T. Kennedy, and W. Sibbett, “All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[CrossRef]

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Kennedy, G.T.

H. K. Tsang, P.A. Snow, I.E. Day, I.H. White, R.V. Penty, R.S. Grant, Z. Su, G.T. Kennedy, and W. Sibbett, “All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[CrossRef]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets R, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Kuramochi, E.

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “Fast on-chip all-optical switches and memories using silicon photonic crystal with extremely low operation energy,” in Proceeding of Conference on Lasers and Electro-Optics, CLEO2005, (Optical Society of America, Baltimore, California, 2005), QPDA5.

Laenen, R.

C. Rauscher and R. Laenen, “Analysis of picosecond mid-infrared pulses by two-photon absorption in germanium,” J. Appl. Phys. 81, 2818–2821 (1997).
[CrossRef]

Liang, T. K.

T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

Lipson, M.

Littler, I.

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-insulator waveguides,” Electron. Lett. 41, 320–321 (2005)
[CrossRef]

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

McNab,

Mitsugi, S.

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “Fast on-chip all-optical switches and memories using silicon photonic crystal with extremely low operation energy,” in Proceeding of Conference on Lasers and Electro-Optics, CLEO2005, (Optical Society of America, Baltimore, California, 2005), QPDA5.

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets R, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Morita, H. T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Moss, D. J.

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-insulator waveguides,” Electron. Lett. 41, 320–321 (2005)
[CrossRef]

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 mu m(2) size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005)
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “Fast on-chip all-optical switches and memories using silicon photonic crystal with extremely low operation energy,” in Proceeding of Conference on Lasers and Electro-Optics, CLEO2005, (Optical Society of America, Baltimore, California, 2005), QPDA5.

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 mu m(2) size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005)
[CrossRef]

Osgood, R. M.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004)
[CrossRef] [PubMed]

Penty, R.V.

H. K. Tsang, P.A. Snow, I.E. Day, I.H. White, R.V. Penty, R.S. Grant, Z. Su, G.T. Kennedy, and W. Sibbett, “All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[CrossRef]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[CrossRef]

Rauscher, C.

C. Rauscher and R. Laenen, “Analysis of picosecond mid-infrared pulses by two-photon absorption in germanium,” J. Appl. Phys. 81, 2818–2821 (1997).
[CrossRef]

S. J.,

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 mu m(2) size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005)
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, J. Wang, and E.W. Van Stryland, ”Nondegenerate optical Kerr effect in semiconductors”, IEEE J. Quantum Electron. 30, 249–255 (1994).
[CrossRef]

Shinya, A.

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “Fast on-chip all-optical switches and memories using silicon photonic crystal with extremely low operation energy,” in Proceeding of Conference on Lasers and Electro-Optics, CLEO2005, (Optical Society of America, Baltimore, California, 2005), QPDA5.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Sibbett, W.

H. K. Tsang, P.A. Snow, I.E. Day, I.H. White, R.V. Penty, R.S. Grant, Z. Su, G.T. Kennedy, and W. Sibbett, “All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[CrossRef]

Snow, P.A.

H. K. Tsang, P.A. Snow, I.E. Day, I.H. White, R.V. Penty, R.S. Grant, Z. Su, G.T. Kennedy, and W. Sibbett, “All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, “Guided wave approaches to optical bistability,” IEEE J. Quantum Electron. 18,1610–1619 (1982).
[CrossRef]

Su, Z.

H. K. Tsang, P.A. Snow, I.E. Day, I.H. White, R.V. Penty, R.S. Grant, Z. Su, G.T. Kennedy, and W. Sibbett, “All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[CrossRef]

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets R, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Tanabe, T.

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “Fast on-chip all-optical switches and memories using silicon photonic crystal with extremely low operation energy,” in Proceeding of Conference on Lasers and Electro-Optics, CLEO2005, (Optical Society of America, Baltimore, California, 2005), QPDA5.

Tsang, H. K.

T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

H. K. Tsang, P.A. Snow, I.E. Day, I.H. White, R.V. Penty, R.S. Grant, Z. Su, G.T. Kennedy, and W. Sibbett, “All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets R, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Van Stryland, E.W.

M. Sheik-Bahae, J. Wang, and E.W. Van Stryland, ”Nondegenerate optical Kerr effect in semiconductors”, IEEE J. Quantum Electron. 30, 249–255 (1994).
[CrossRef]

Van Thourhout, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets R, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Vlasov, Y. A.

Wang, J.

M. Sheik-Bahae, J. Wang, and E.W. Van Stryland, ”Nondegenerate optical Kerr effect in semiconductors”, IEEE J. Quantum Electron. 30, 249–255 (1994).
[CrossRef]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

White, I.H.

H. K. Tsang, P.A. Snow, I.E. Day, I.H. White, R.V. Penty, R.S. Grant, Z. Su, G.T. Kennedy, and W. Sibbett, “All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[CrossRef]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Xu, Q.

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107

T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

H. K. Tsang, P.A. Snow, I.E. Day, I.H. White, R.V. Penty, R.S. Grant, Z. Su, G.T. Kennedy, and W. Sibbett, “All-Optical Modulation with Ultrafast Recovery at Low Pump Energies in Passive InGaAs/InGaAsP MQW Waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[CrossRef]

Electron. Lett. (2)

D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-insulator waveguides,” Electron. Lett. 41, 320–321 (2005)
[CrossRef]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 mu m(2) size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005)
[CrossRef]

IEEE J. Quantum Electron. (3)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets R, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

G. I. Stegeman, “Guided wave approaches to optical bistability,” IEEE J. Quantum Electron. 18,1610–1619 (1982).
[CrossRef]

M. Sheik-Bahae, J. Wang, and E.W. Van Stryland, ”Nondegenerate optical Kerr effect in semiconductors”, IEEE J. Quantum Electron. 30, 249–255 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. T. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, ”Low-loss SOI Photonic Wires and Ring Resonators Fabricated with Deep UV Lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

J. Appl. Phys. (1)

C. Rauscher and R. Laenen, “Analysis of picosecond mid-infrared pulses by two-photon absorption in germanium,” J. Appl. Phys. 81, 2818–2821 (1997).
[CrossRef]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004)
[CrossRef] [PubMed]

Opt. Express (2)

Other (1)

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “Fast on-chip all-optical switches and memories using silicon photonic crystal with extremely low operation energy,” in Proceeding of Conference on Lasers and Electro-Optics, CLEO2005, (Optical Society of America, Baltimore, California, 2005), QPDA5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of TPA in silicon. (a) degenerate TPA. (b) nondegenerate TPA.

Fig. 2.
Fig. 2.

Experimental setup. EDFA: Erbium-doped fiber amplifier, OBF: optical bandpass filter, PD: photodiode, DSO: digital sampling oscilloscope.

Fig. 3.
Fig. 3.

(a) Optical spectrum of combined signal before waveguide. (b) cw signal after optical filter.

Fig. 4.
Fig. 4.

(a) Pump pulses at 1552nm. (b) Cross-absorption modulated cw signal at 1536 nm

Fig. 5.
Fig. 5.

Cross-absorption modulated cw signal measured by streak camera.

Fig. 6.
Fig. 6.

Calculation of modulation depth as function of wire lengths

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dP pump dz z t = α P pump z t β deg P pump z t P pump z t
dP probe dz z t = α P probe z t β non -deg P pump z t P probe z t

Metrics