Abstract

We present an experimental technique that allows the direct measurement of the continuous wave (cw) lasing threshold and the slope efficiency of a Ce:LiCaAlF6 (Ce:LiCAF) laser source by means of time-resolved measurement in the pulsed regime. We used a long-pulse-duration source to pump a tunable laser and a high-efficiency nondispersive laser in a quasi-stationary lasing regime. We compare the experimental results with earlier theoretical evaluations, and we demonstrate the feasibility of a cw Ce:LiCAF laser. Under the conditions discussed here, our technique can be applied to all the active media that achieved pulsed laser emission to investigate their potential as cw laser active media.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. D. Marshall, J. A. Speth, S. A. Payne, W. F. Krupke, G. J. Quarles, V. Castillo, and B. H. T. Chai, �??Ultraviolet laser emission properties of Ce3+-doped LiSrAlF6 and LiCaAlF6 ,�?? J. Opt. Soc. Am. B 11, 2054-2065 (1994).
    [CrossRef]
  2. J. F. Pinto, G. H. Rosenblatt, L. Esterowitz, V. Castillo and G. J. Quarles, �??Tunable solid-state laser action in Ce3+:LiSrAIF6,�?? Electron. Lett., 30, 240-241 (1994).
    [CrossRef]
  3. Z. Liu, N. Sarukura, M. A. Dubinskii, R. Y. Abdulsabirov and S. L. Korableva, �??All-Solid-State subnanosecond tunable ultraviolet laser sources based on Ce3+ activated fluoride crystals,�?? J. Nonlinear Opt. Phys. Mater. 8, 41-54 (1999).
    [CrossRef]
  4. N. Sarukura, M. A. Dubinskii, Z. Liu, V. Semanshko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, �??Ce3+ activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast laser with direct 10ns pumping,�?? IEEE J. Sel. Top. Quantum Electron. 1, 792-803 (1995).
    [CrossRef]
  5. A. J. S. McGonigle, D. W. Coutts, and C. E. Webb, �??530-mW 7-kHz cerium LICAF laser pumped by the sum-frequency-mixed output of a copper-vapor laser,�?? Opt. Lett. 24, 232-234 (1999).
    [CrossRef]
  6. D. W. Coutts and A. J. S. McGonigle, �??Cerium-doped fluoride lasers�?? IEEE J. Quantum Electron. 40, 1430-1440 (2004).
    [CrossRef]
  7. D. Alderighi, G. Toci, M. Vannini, D. Parisi, S.Bigotta, and M. Tonelli are preparing a manuscript to be called �??High efficiency UV solid state lasers based on Ce:LiCaAlF6 crystals.�??
  8. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, �??LiCaAlF6:Ce3+: a promising new solid-state laser material,�?? IEEE J. Quantum Electron. 24, 2243-2252 (1998).
    [CrossRef]
  9. J. Sakuma, Y. Asakawa and M.Obara, �??Generation of 5W deep-UV continuous-wave radiation at 266nm by an external cavity with a CsLiB6O10 crystal,�?? Opt. Lett. 29, 92-94 (2004).
    [CrossRef] [PubMed]
  10. M. S. Roth, E. W. Wyss, T. Graf, and H. P. Weber, �?? End-pumped Nd:YAG laser with self-adaptive compensation of the thermal lens,�?? IEEE J. Quantum Electron. 40, 1700-1703 (2004)
    [CrossRef]
  11. M. A. Dubinskii, V. V. Semanshko, A. K. Naumov, R. Y. Abdulsabirov, and S. L. Korableva, �??Ce3+-doped colquiriite. A new concept of all-solid-state tunable ultraviolet laser,�?? J. Mod. Opt. 40, 1-5 (1993).

Electron. Lett. (1)

J. F. Pinto, G. H. Rosenblatt, L. Esterowitz, V. Castillo and G. J. Quarles, �??Tunable solid-state laser action in Ce3+:LiSrAIF6,�?? Electron. Lett., 30, 240-241 (1994).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. W. Coutts and A. J. S. McGonigle, �??Cerium-doped fluoride lasers�?? IEEE J. Quantum Electron. 40, 1430-1440 (2004).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, �??LiCaAlF6:Ce3+: a promising new solid-state laser material,�?? IEEE J. Quantum Electron. 24, 2243-2252 (1998).
[CrossRef]

M. S. Roth, E. W. Wyss, T. Graf, and H. P. Weber, �?? End-pumped Nd:YAG laser with self-adaptive compensation of the thermal lens,�?? IEEE J. Quantum Electron. 40, 1700-1703 (2004)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Sarukura, M. A. Dubinskii, Z. Liu, V. Semanshko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, �??Ce3+ activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast laser with direct 10ns pumping,�?? IEEE J. Sel. Top. Quantum Electron. 1, 792-803 (1995).
[CrossRef]

J. Mod. Opt. (1)

M. A. Dubinskii, V. V. Semanshko, A. K. Naumov, R. Y. Abdulsabirov, and S. L. Korableva, �??Ce3+-doped colquiriite. A new concept of all-solid-state tunable ultraviolet laser,�?? J. Mod. Opt. 40, 1-5 (1993).

J. Nonlinear Opt. Phys. Mater. (1)

Z. Liu, N. Sarukura, M. A. Dubinskii, R. Y. Abdulsabirov and S. L. Korableva, �??All-Solid-State subnanosecond tunable ultraviolet laser sources based on Ce3+ activated fluoride crystals,�?? J. Nonlinear Opt. Phys. Mater. 8, 41-54 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (1)

D. Alderighi, G. Toci, M. Vannini, D. Parisi, S.Bigotta, and M. Tonelli are preparing a manuscript to be called �??High efficiency UV solid state lasers based on Ce:LiCaAlF6 crystals.�??

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup of the Ce:LiCAF tunable laser with residual pump reinjection. Dark colored beam, laser beam; light colored beam, pump beam.

Fig. 2.
Fig. 2.

(a) Typical temporal evolution of the pump Pin (t) and laser pulse Pout (t) at RR=1 kHz. (b) Pout (t) as function of Pin (t): experimental data (symbols) and linear fit of the steady state of the laser pulse (solid lines) for RR = 1.0 kHz; 1.5 kHz; 2.0 kHz. Absorbed pump energies are 640 μJ, 420 μJ, and 280 μJ, respectively. Numbered arrows indicate the three phases of the laser and the pump pulse.

Fig. 3.
Fig. 3.

Pout (t) as function of the absorbed input power for three different pump pulse energies at the repetition rate of 2 kHz. Experimental data (symbols) and linear fit (solid line) of the cw laser action are shown. The indicated values of Pcwth and ηcw are obtained by the linear fit.

Fig. 4.
Fig. 4.

τ p1 and τ p2 (right scale) as function of time as obtained for a typical pump pulse.

Tables (1)

Tables Icon

Table 1. Summary of experimental and theoretical values of threshold power, threshold intensity and slope efficiency

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

N ex ( r , t ) = n ( t ) exp { 2 r 2 / w p 2 } exp { α p z } ,
P c ˙ ( t ) = 1 τ c P c ( t ) + 2 ( σ em σ ESA ) t c w p 2 w c 2 ( 1 e α p l α p ) n ( t ) P c ( t ) ,
n ˙ ( t ) = η p α p ħ ω p 2 π w p 2 P p ( t ) n ( t ) τ f 2 τ f P c ( t ) π w c 2 I sat n ( t ) ,
P ( t ) = 4 P c ( t ) / ( π w c 2 I sat ) ,
q ( t ) = n ( t ) τ c t c w p 2 w c 2 2 ( σ em σ ESA ) α p 1 exp ( α p l ) ,
F ( t ) = 4 ( σ em σ ESA ) ħ ω p τ c t c η p [ 1 exp ( α p l ) ] P p ( t ) π w c 2 .
p ˙ ( t ) = 1 τ c p ( t ) + q ( t ) p ( t ) τ c ,
q ˙ ( t ) = F ( t ) q ( t ) τ f q ( t ) p ( t ) τ f ,
q cw = 1 , p cw ( F ) = τ f F 1 .
p ( t ) = p cw ( F ) + β ( t ) .
q ( t ) = 1 / [ 1 + β ( t ) / ( F ( t ) τ f ) ] 1 β ( t ) / ( F ( t ) τ f ) ,
β ˙ ( t ) = τ f F ˙ ( t ) ) β ( t ) τ c + β ( t ) τ c τ f F ( t ) ,
β ( t ) = t 0 t τ f F ˙ ( θ ) exp [ t θ τ c + 1 τ c τ f θ t d x F ( x ) ] d θ + β ( t 0 ) ,
β ( t ) 0 t τ f F ˙ ( θ ) exp [ γ ˜ ( t ) ( t θ ) ] d θ ; γ ˜ ( t ) = 1 τ c 1 τ c τ f F ( t ) .
τ f F ˙ ( t ) 0 t exp [ γ ˜ ( t ) ( t θ ) ] d θ τ f γ ˜ ( t ) F ˙ ( t ) τ f τ c F ˙ ( t ) .
1 τ p 2 = F ̈ F ˙ ( t ) 1 τ c .
1 τ p 1 = F ˙ ( t ) F ( t ) << 1 τ c .
P cw th = π ( w c 2 + w p 2 ) h ν p ( T + L ) 4 ( σ em σ ESA ) τ f η p cos ( θ t ) cos ( θ BR ) .
η cw = λ p λ c η p ( σ em σ ESA σ em ) ( T T + L ) .

Metrics