Abstract

External cavity-free and electrically tunable laser made from photonics band gap (PBG) materials with electrically tunable stop band is reported. The tunable PBG materials are developed from a family of novel cholesteric liquid crystals (CLC) with electrically variable pitch that adopts a non-constant distribution in space across the CLC film. The CLC exhibits a distributed feedback cavity whose resonant frequency can be electrically varied over a spectral range wider than 300 nm. Under an optical pumping and subject to a variable electric field, a tunable laser has been demonstrated in experiment that shows a wavelength tuning over 33 nm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref] [PubMed]
  3. K. Yoshino, S. John, R. H. Baughman, R. D. McCullough, Z. V. Vardeny, and A. A. Zakhidov, “Tunable photonic crystal from interpenetrating electroactive networks: design, synthesis and devices,” http://www.nedo.go.jp/itd/grant-e/BUSSEI/97mb1-e.htm
  4. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
    [Crossref]
  5. R. Gaughan, “Infiltrated crystal offers tunable bandgap,” http://www.photonics.com/spectra/tech/XQ/ASP/techid.1302/QX/read.htm
  6. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Möckl, W. Brötting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26, 593–595 (2001).
    [Crossref]
  7. A. Munoz, P. Palffy-Muhoray, B. Taheri, and R. J. Twieg, “Lasing in cholesteric liquid crystals from UV to IR,” Proc. SPIE 4463, [4463–17] (2001).
  8. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
    [Crossref]
  9. V. I. Kopp, A. Z. Genack, and Z-Q. Zhang, “Large coherence area thin-film photonic stop-band lasers,” Phys. Rev. Lett. 86, 1753–1756 (2001).
    [Crossref] [PubMed]
  10. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
    [Crossref] [PubMed]
  11. A. Munoz F., P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26, 804–806 (2001).
    [Crossref]
  12. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
    [Crossref]
  13. H. Finkelmann, S.T. Kim, A, Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
    [Crossref]
  14. L. Li, “Special liquid crystal materials with multiple optical states and fast response time,” presented at SPIE International Symposium on Optical Science and Technology, San Diego, California, 29 July-3 Aug, 2001.
  15. Haiping Yu, Jianhui Li, Ben Tang, and Le Li, “Mirrorless electrically tunable CLC lasers,” presented at Great Lakes Photonics Symposium, Cleveland, Ohio, 7-11 June, 2004.
  16. J. Schmidtkea and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31, 179–194 (2003).
    [Crossref]

2005 (1)

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
[Crossref]

2003 (2)

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[Crossref] [PubMed]

J. Schmidtkea and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31, 179–194 (2003).
[Crossref]

2001 (5)

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Möckl, W. Brötting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26, 593–595 (2001).
[Crossref]

A. Munoz F., P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26, 804–806 (2001).
[Crossref]

H. Finkelmann, S.T. Kim, A, Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

A. Munoz, P. Palffy-Muhoray, B. Taheri, and R. J. Twieg, “Lasing in cholesteric liquid crystals from UV to IR,” Proc. SPIE 4463, [4463–17] (2001).

V. I. Kopp, A. Z. Genack, and Z-Q. Zhang, “Large coherence area thin-film photonic stop-band lasers,” Phys. Rev. Lett. 86, 1753–1756 (2001).
[Crossref] [PubMed]

1999 (1)

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[Crossref]

1998 (1)

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

A,

H. Finkelmann, S.T. Kim, A, Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Barberi, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
[Crossref]

Bartolino, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
[Crossref]

Baughman, R. H.

K. Yoshino, S. John, R. H. Baughman, R. D. McCullough, Z. V. Vardeny, and A. A. Zakhidov, “Tunable photonic crystal from interpenetrating electroactive networks: design, synthesis and devices,” http://www.nedo.go.jp/itd/grant-e/BUSSEI/97mb1-e.htm

Berleb, S.

Brötting, W.

Busch, K.

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[Crossref]

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
[Crossref]

Chilaya, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
[Crossref]

Cipparrone, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
[Crossref]

Fan, B.

Feldmann, J.

Finkelmann, H.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[Crossref] [PubMed]

H. Finkelmann, S.T. Kim, A, Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Gaughan, R.

R. Gaughan, “Infiltrated crystal offers tunable bandgap,” http://www.photonics.com/spectra/tech/XQ/ASP/techid.1302/QX/read.htm

Genack, A. Z.

V. I. Kopp, A. Z. Genack, and Z-Q. Zhang, “Large coherence area thin-film photonic stop-band lasers,” Phys. Rev. Lett. 86, 1753–1756 (2001).
[Crossref] [PubMed]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
[Crossref]

Gimenez, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
[Crossref]

Gombert, A.

John, S.

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

K. Yoshino, S. John, R. H. Baughman, R. D. McCullough, Z. V. Vardeny, and A. A. Zakhidov, “Tunable photonic crystal from interpenetrating electroactive networks: design, synthesis and devices,” http://www.nedo.go.jp/itd/grant-e/BUSSEI/97mb1-e.htm

Kim, S.T.

H. Finkelmann, S.T. Kim, A, Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Kopp, V. I.

V. I. Kopp, A. Z. Genack, and Z-Q. Zhang, “Large coherence area thin-film photonic stop-band lasers,” Phys. Rev. Lett. 86, 1753–1756 (2001).
[Crossref] [PubMed]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
[Crossref]

Lemmer, U.

Li, Jianhui

Haiping Yu, Jianhui Li, Ben Tang, and Le Li, “Mirrorless electrically tunable CLC lasers,” presented at Great Lakes Photonics Symposium, Cleveland, Ohio, 7-11 June, 2004.

Li, L.

L. Li, “Special liquid crystal materials with multiple optical states and fast response time,” presented at SPIE International Symposium on Optical Science and Technology, San Diego, California, 29 July-3 Aug, 2001.

Li, Le

Haiping Yu, Jianhui Li, Ben Tang, and Le Li, “Mirrorless electrically tunable CLC lasers,” presented at Great Lakes Photonics Symposium, Cleveland, Ohio, 7-11 June, 2004.

Mazzulla, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
[Crossref]

McCullough, R. D.

K. Yoshino, S. John, R. H. Baughman, R. D. McCullough, Z. V. Vardeny, and A. A. Zakhidov, “Tunable photonic crystal from interpenetrating electroactive networks: design, synthesis and devices,” http://www.nedo.go.jp/itd/grant-e/BUSSEI/97mb1-e.htm

Möckl, A. G.

Munoz,

H. Finkelmann, S.T. Kim, A, Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Munoz, A.

A. Munoz, P. Palffy-Muhoray, B. Taheri, and R. J. Twieg, “Lasing in cholesteric liquid crystals from UV to IR,” Proc. SPIE 4463, [4463–17] (2001).

Munoz F., A.

Oriol, L.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
[Crossref]

Palffy-Muhoray, P.

H. Finkelmann, S.T. Kim, A, Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

A. Munoz, P. Palffy-Muhoray, B. Taheri, and R. J. Twieg, “Lasing in cholesteric liquid crystals from UV to IR,” Proc. SPIE 4463, [4463–17] (2001).

A. Munoz F., P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26, 804–806 (2001).
[Crossref]

Petriashvili, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
[Crossref]

Pinol, M.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
[Crossref]

Riechel, S.

Schmidtke, J.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[Crossref] [PubMed]

Schmidtkea, J.

J. Schmidtkea and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31, 179–194 (2003).
[Crossref]

Stille, W.

J. Schmidtkea and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31, 179–194 (2003).
[Crossref]

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[Crossref] [PubMed]

Taheri, B.

H. Finkelmann, S.T. Kim, A, Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

A. Munoz, P. Palffy-Muhoray, B. Taheri, and R. J. Twieg, “Lasing in cholesteric liquid crystals from UV to IR,” Proc. SPIE 4463, [4463–17] (2001).

A. Munoz F., P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26, 804–806 (2001).
[Crossref]

Tang, Ben

Haiping Yu, Jianhui Li, Ben Tang, and Le Li, “Mirrorless electrically tunable CLC lasers,” presented at Great Lakes Photonics Symposium, Cleveland, Ohio, 7-11 June, 2004.

Twieg, R. J.

A. Munoz, P. Palffy-Muhoray, B. Taheri, and R. J. Twieg, “Lasing in cholesteric liquid crystals from UV to IR,” Proc. SPIE 4463, [4463–17] (2001).

Vardeny, Z. V.

K. Yoshino, S. John, R. H. Baughman, R. D. McCullough, Z. V. Vardeny, and A. A. Zakhidov, “Tunable photonic crystal from interpenetrating electroactive networks: design, synthesis and devices,” http://www.nedo.go.jp/itd/grant-e/BUSSEI/97mb1-e.htm

Vithana, H. K. M.

Wittwer, V.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yoshino, K.

K. Yoshino, S. John, R. H. Baughman, R. D. McCullough, Z. V. Vardeny, and A. A. Zakhidov, “Tunable photonic crystal from interpenetrating electroactive networks: design, synthesis and devices,” http://www.nedo.go.jp/itd/grant-e/BUSSEI/97mb1-e.htm

Yu, Haiping

Haiping Yu, Jianhui Li, Ben Tang, and Le Li, “Mirrorless electrically tunable CLC lasers,” presented at Great Lakes Photonics Symposium, Cleveland, Ohio, 7-11 June, 2004.

Zakhidov, A. A.

K. Yoshino, S. John, R. H. Baughman, R. D. McCullough, Z. V. Vardeny, and A. A. Zakhidov, “Tunable photonic crystal from interpenetrating electroactive networks: design, synthesis and devices,” http://www.nedo.go.jp/itd/grant-e/BUSSEI/97mb1-e.htm

Zhang, Z-Q.

V. I. Kopp, A. Z. Genack, and Z-Q. Zhang, “Large coherence area thin-film photonic stop-band lasers,” Phys. Rev. Lett. 86, 1753–1756 (2001).
[Crossref] [PubMed]

Adv. Mater. (1)

H. Finkelmann, S.T. Kim, A, Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Appl. Phys. Lett. (1)

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 80, 051107 (2005)
[Crossref]

Eur. Phys. J. B (1)

J. Schmidtkea and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31, 179–194 (2003).
[Crossref]

Opt. Lett. (3)

Phys. Rev. Lett. (5)

V. I. Kopp, A. Z. Genack, and Z-Q. Zhang, “Large coherence area thin-film photonic stop-band lasers,” Phys. Rev. Lett. 86, 1753–1756 (2001).
[Crossref] [PubMed]

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[Crossref]

Proc. SPIE (1)

A. Munoz, P. Palffy-Muhoray, B. Taheri, and R. J. Twieg, “Lasing in cholesteric liquid crystals from UV to IR,” Proc. SPIE 4463, [4463–17] (2001).

Other (4)

R. Gaughan, “Infiltrated crystal offers tunable bandgap,” http://www.photonics.com/spectra/tech/XQ/ASP/techid.1302/QX/read.htm

K. Yoshino, S. John, R. H. Baughman, R. D. McCullough, Z. V. Vardeny, and A. A. Zakhidov, “Tunable photonic crystal from interpenetrating electroactive networks: design, synthesis and devices,” http://www.nedo.go.jp/itd/grant-e/BUSSEI/97mb1-e.htm

L. Li, “Special liquid crystal materials with multiple optical states and fast response time,” presented at SPIE International Symposium on Optical Science and Technology, San Diego, California, 29 July-3 Aug, 2001.

Haiping Yu, Jianhui Li, Ben Tang, and Le Li, “Mirrorless electrically tunable CLC lasers,” presented at Great Lakes Photonics Symposium, Cleveland, Ohio, 7-11 June, 2004.

Supplementary Material (1)

» Media 1: MOV (618 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of cholesteric LC

Fig. 2.
Fig. 2.

Computer simulation of fluorescence/DOS from narrow and broad band CLCs

Fig. 3.
Fig. 3.

Transmission of dyed broadband CLC and its lasing action under no E-field

Fig. 4.
Fig. 4.

CLC output power vs. pumping power

Fig. 5.
Fig. 5.

Photo picture/video clip of tunable lasing from a CLC under 532 nm Nd:YAG pumping [Media 1]

Fig. 6.
Fig. 6.

Electrically tunable lasing from the tunable CLC

Fig. 7.
Fig. 7.

CLC laser wavelength versus applied voltage

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ c = n a P
Δ λ = Δ nP
Δ λ n Δ P

Metrics